|
a |
|
b/exec_dp.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ). |
|
|
3 |
# |
|
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
5 |
# you may not use this file except in compliance with the License. |
|
|
6 |
# You may obtain a copy of the License at |
|
|
7 |
# |
|
|
8 |
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
9 |
# |
|
|
10 |
# Unless required by applicable law or agreed to in writing, software |
|
|
11 |
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
13 |
# See the License for the specific language governing permissions and |
|
|
14 |
# limitations under the License. |
|
|
15 |
# ============================================================================== |
|
|
16 |
|
|
|
17 |
"""execution script.""" |
|
|
18 |
|
|
|
19 |
import code |
|
|
20 |
import argparse |
|
|
21 |
import os, warnings |
|
|
22 |
import time |
|
|
23 |
import pandas as pd |
|
|
24 |
import pickle |
|
|
25 |
import sys |
|
|
26 |
import cProfile, pstats |
|
|
27 |
|
|
|
28 |
import torch |
|
|
29 |
import torch.nn as nn |
|
|
30 |
|
|
|
31 |
import utils.exp_utils as utils |
|
|
32 |
from evaluator import Evaluator |
|
|
33 |
from predictor import Predictor |
|
|
34 |
from plotting import plot_batch_prediction |
|
|
35 |
from datetime import datetime |
|
|
36 |
|
|
|
37 |
for msg in ["Attempting to set identical bottom==top results", |
|
|
38 |
"This figure includes Axes that are not compatible with tight_layout", |
|
|
39 |
"Data has no positive values, and therefore cannot be log-scaled.", |
|
|
40 |
".*invalid value encountered in double_scalars.*", |
|
|
41 |
".*Mean of empty slice.*"]: |
|
|
42 |
warnings.filterwarnings("ignore", msg) |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
def train(logger): |
|
|
46 |
""" |
|
|
47 |
perform the training routine for a given fold. saves plots and selected parameters to the experiment dir |
|
|
48 |
specified in the configs. |
|
|
49 |
""" |
|
|
50 |
time_start_train = time.time() |
|
|
51 |
logger.info('performing training in {}D over fold {} on experiment {} with model {}'.format( |
|
|
52 |
cf.dim, cf.fold, cf.exp_dir, cf.model)) |
|
|
53 |
|
|
|
54 |
print ("Number of cuda devices available ",torch.cuda.device_count()) |
|
|
55 |
|
|
|
56 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ## specify the GPU id's, GPU id's start from 0. |
|
|
57 |
|
|
|
58 |
net = model.net(cf, logger).cuda() |
|
|
59 |
|
|
|
60 |
#net = nn.DataParallel(net).to(device) |
|
|
61 |
|
|
|
62 |
print ("Did data parallel get carried out for net in exec script?? ",isinstance(net, nn.DataParallel)) |
|
|
63 |
|
|
|
64 |
if hasattr(cf, "optimizer") and cf.optimizer.lower() == "adam": |
|
|
65 |
logger.info("Using Adam optimizer.") |
|
|
66 |
optimizer = torch.optim.Adam(utils.parse_params_for_optim(net, weight_decay=cf.weight_decay, |
|
|
67 |
exclude_from_wd=cf.exclude_from_wd), |
|
|
68 |
lr=cf.learning_rate[0]) |
|
|
69 |
else: |
|
|
70 |
logger.info("Using AdamW optimizer.") |
|
|
71 |
optimizer = torch.optim.AdamW(utils.parse_params_for_optim(net, weight_decay=cf.weight_decay, |
|
|
72 |
exclude_from_wd=cf.exclude_from_wd), |
|
|
73 |
lr=cf.learning_rate[0]) |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
if cf.dynamic_lr_scheduling: |
|
|
77 |
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=cf.scheduling_mode, factor=cf.lr_decay_factor, |
|
|
78 |
patience=cf.scheduling_patience) |
|
|
79 |
|
|
|
80 |
model_selector = utils.ModelSelector(cf, logger) |
|
|
81 |
train_evaluator = Evaluator(cf, logger, mode='train') |
|
|
82 |
val_evaluator = Evaluator(cf, logger, mode=cf.val_mode) |
|
|
83 |
|
|
|
84 |
starting_epoch = 1 |
|
|
85 |
|
|
|
86 |
# prepare monitoring |
|
|
87 |
monitor_metrics = utils.prepare_monitoring(cf) |
|
|
88 |
|
|
|
89 |
if cf.resume: |
|
|
90 |
checkpoint_path = os.path.join(cf.fold_dir, "last_checkpoint") |
|
|
91 |
starting_epoch, net, optimizer, monitor_metrics = \ |
|
|
92 |
utils.load_checkpoint(checkpoint_path, net, optimizer) |
|
|
93 |
logger.info('resumed from checkpoint {} to epoch {}'.format(checkpoint_path, starting_epoch)) |
|
|
94 |
|
|
|
95 |
####### Use this to create hdf5 |
|
|
96 |
logger.info('loading dataset and initializing batch generators...') |
|
|
97 |
print ("Starting data_loader.get_train_generators in exec...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f")) |
|
|
98 |
batch_gen = data_loader.get_train_generators(cf, logger) |
|
|
99 |
print ("Finished data_loader.get_train_generators in exec...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f")) |
|
|
100 |
|
|
|
101 |
####### Writing out train data to file |
|
|
102 |
#train_data = dict() |
|
|
103 |
#print ('Write training data to json') |
|
|
104 |
#for bix in range(cf.num_train_batches): |
|
|
105 |
# batch = next(batch_gen['train']) |
|
|
106 |
# train_data.update(batch) |
|
|
107 |
#with open('train_data.json', 'w') as outfile: |
|
|
108 |
# json.dump(train_data, outfile) |
|
|
109 |
##################################### |
|
|
110 |
|
|
|
111 |
for epoch in range(starting_epoch, cf.num_epochs + 1): |
|
|
112 |
|
|
|
113 |
logger.info('starting training epoch {}'.format(epoch)) |
|
|
114 |
start_time = time.time() |
|
|
115 |
net.train() |
|
|
116 |
train_results_list = [] |
|
|
117 |
for bix in range(cf.num_train_batches): |
|
|
118 |
|
|
|
119 |
# profiler = cProfile.Profile() |
|
|
120 |
# profiler.enable() |
|
|
121 |
|
|
|
122 |
|
|
|
123 |
######### Insert call to grab right training data fold from hdf5 |
|
|
124 |
print ("Get next batch_gen['train] ...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f")) |
|
|
125 |
##Stalled |
|
|
126 |
batch = next(batch_gen['train']) ######## Instead of this line, grab a batch from training data fold |
|
|
127 |
tic_fw = time.time() |
|
|
128 |
print ("Start forward pass...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f")) |
|
|
129 |
results_dict = net.train_forward(batch) |
|
|
130 |
tic_bw = time.time() |
|
|
131 |
optimizer.zero_grad() |
|
|
132 |
print ("Start backward pass..",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f")) |
|
|
133 |
results_dict['torch_loss'].backward() |
|
|
134 |
print ("Start optimizing...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f")) |
|
|
135 |
optimizer.step() |
|
|
136 |
print('\rtr. batch {0}/{1} (ep. {2}) fw {3:.2f}s / bw {4:.2f} s / total {5:.2f} s || '.format( |
|
|
137 |
bix + 1, cf.num_train_batches, epoch, tic_bw - tic_fw, time.time() - tic_bw, |
|
|
138 |
time.time() - tic_fw) + results_dict['logger_string'], flush=True, end="") |
|
|
139 |
print ("Results Dict Size: ",sys.getsizeof(results_dict)) |
|
|
140 |
train_results_list.append(({k:v for k,v in results_dict.items() if k != "seg_preds"}, batch["pid"])) |
|
|
141 |
print("Loop through train batch DONE",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f"),(time.time()-time_start_train)/60, "minutes since training started") |
|
|
142 |
|
|
|
143 |
# profiler.disable() |
|
|
144 |
# stats = pstats.Stats(profiler).sort_stats('cumtime') |
|
|
145 |
# stats.print_stats() |
|
|
146 |
|
|
|
147 |
_, monitor_metrics['train'] = train_evaluator.evaluate_predictions(train_results_list, monitor_metrics['train']) |
|
|
148 |
|
|
|
149 |
# logger.info('generating training example plot.') |
|
|
150 |
# utils.split_off_process(plot_batch_prediction, batch, results_dict, cf, outfile=os.path.join( |
|
|
151 |
# cf.plot_dir, 'pred_example_{}_train.png'.format(cf.fold))) |
|
|
152 |
|
|
|
153 |
train_time = time.time() - start_time |
|
|
154 |
|
|
|
155 |
logger.info('starting validation in mode {}.'.format(cf.val_mode)) |
|
|
156 |
with torch.no_grad(): |
|
|
157 |
net.eval() |
|
|
158 |
if cf.do_validation: |
|
|
159 |
val_results_list = [] |
|
|
160 |
val_predictor = Predictor(cf, net, logger, mode='val') |
|
|
161 |
for _ in range(batch_gen['n_val']): |
|
|
162 |
########## Insert call to grab right validation data fold from hdf5 |
|
|
163 |
batch = next(batch_gen[cf.val_mode]) |
|
|
164 |
if cf.val_mode == 'val_patient': |
|
|
165 |
results_dict = val_predictor.predict_patient(batch) |
|
|
166 |
elif cf.val_mode == 'val_sampling': |
|
|
167 |
results_dict = net.train_forward(batch, is_validation=True) |
|
|
168 |
#val_results_list.append([results_dict['boxes'], batch['pid']]) |
|
|
169 |
val_results_list.append(({k:v for k,v in results_dict.items() if k != "seg_preds"}, batch["pid"])) |
|
|
170 |
#monitor_metrics['val']['monitor_values'][epoch].append(results_dict['monitor_values']) |
|
|
171 |
|
|
|
172 |
_, monitor_metrics['val'] = val_evaluator.evaluate_predictions(val_results_list, monitor_metrics['val']) |
|
|
173 |
model_selector.run_model_selection(net, optimizer, monitor_metrics, epoch) |
|
|
174 |
|
|
|
175 |
# update monitoring and prediction plots |
|
|
176 |
monitor_metrics.update({"lr": |
|
|
177 |
{str(g): group['lr'] for (g, group) in enumerate(optimizer.param_groups)}}) |
|
|
178 |
logger.metrics2tboard(monitor_metrics, global_step=epoch) |
|
|
179 |
|
|
|
180 |
epoch_time = time.time() - start_time |
|
|
181 |
logger.info('trained epoch {}: took {} ({} train / {} val)'.format( |
|
|
182 |
epoch, utils.get_formatted_duration(epoch_time, "ms"), utils.get_formatted_duration(train_time, "ms"), |
|
|
183 |
utils.get_formatted_duration(epoch_time-train_time, "ms"))) |
|
|
184 |
########### Insert call to grab right validation data fold from hdf5 |
|
|
185 |
batch = next(batch_gen['val_sampling']) |
|
|
186 |
results_dict = net.train_forward(batch, is_validation=True) |
|
|
187 |
logger.info('generating validation-sampling example plot.') |
|
|
188 |
utils.split_off_process(plot_batch_prediction, batch, results_dict, cf, outfile=os.path.join( |
|
|
189 |
cf.plot_dir, 'pred_example_{}_val.png'.format(cf.fold))) |
|
|
190 |
|
|
|
191 |
# -------------- scheduling ----------------- |
|
|
192 |
if cf.dynamic_lr_scheduling: |
|
|
193 |
scheduler.step(monitor_metrics["val"][cf.scheduling_criterion][-1]) |
|
|
194 |
else: |
|
|
195 |
for param_group in optimizer.param_groups: |
|
|
196 |
param_group['lr'] = cf.learning_rate[epoch-1] |
|
|
197 |
|
|
|
198 |
def test(logger): |
|
|
199 |
""" |
|
|
200 |
perform testing for a given fold (or hold out set). save stats in evaluator. |
|
|
201 |
""" |
|
|
202 |
|
|
|
203 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ## specify the GPU id's, GPU id's start from 0. |
|
|
204 |
|
|
|
205 |
logger.info('starting testing model of fold {} in exp {}'.format(cf.fold, cf.exp_dir)) |
|
|
206 |
net = model.net(cf, logger).cuda() |
|
|
207 |
|
|
|
208 |
#net = nn.DataParallel(net).to(device) |
|
|
209 |
|
|
|
210 |
test_predictor = Predictor(cf, net, logger, mode='test') |
|
|
211 |
test_evaluator = Evaluator(cf, logger, mode='test') |
|
|
212 |
################ Insert call to grab right test data (fold?) from hdf5 |
|
|
213 |
batch_gen = data_loader.get_test_generator(cf, logger) |
|
|
214 |
####code.interact(local=locals()) |
|
|
215 |
test_results_list = test_predictor.predict_test_set(batch_gen, return_results=True) |
|
|
216 |
test_evaluator.evaluate_predictions(test_results_list) |
|
|
217 |
test_evaluator.score_test_df() |
|
|
218 |
|
|
|
219 |
if __name__ == '__main__': |
|
|
220 |
stime = time.time() |
|
|
221 |
|
|
|
222 |
parser = argparse.ArgumentParser() |
|
|
223 |
parser.add_argument('-m', '--mode', type=str, default='train_test', |
|
|
224 |
help='one out of: train / test / train_test / analysis / create_exp') |
|
|
225 |
parser.add_argument('-f','--folds', nargs='+', type=int, default=None, |
|
|
226 |
help='None runs over all folds in CV. otherwise specify list of folds.') |
|
|
227 |
parser.add_argument('--exp_dir', type=str, default='/path/to/experiment/directory', |
|
|
228 |
help='path to experiment dir. will be created if non existent.') |
|
|
229 |
parser.add_argument('--server_env', default=False, action='store_true', |
|
|
230 |
help='change IO settings to deploy models on a cluster.') |
|
|
231 |
parser.add_argument('--data_dest', type=str, default=None, help="path to final data folder if different from config.") |
|
|
232 |
parser.add_argument('--use_stored_settings', default=False, action='store_true', |
|
|
233 |
help='load configs from existing exp_dir instead of source dir. always done for testing, ' |
|
|
234 |
'but can be set to true to do the same for training. useful in job scheduler environment, ' |
|
|
235 |
'where source code might change before the job actually runs.') |
|
|
236 |
parser.add_argument('--resume', action="store_true", default=False, |
|
|
237 |
help='if given, resume from checkpoint(s) of the specified folds.') |
|
|
238 |
parser.add_argument('--exp_source', type=str, default='experiments/toy_exp', |
|
|
239 |
help='specifies, from which source experiment to load configs and data_loader.') |
|
|
240 |
parser.add_argument('--no_benchmark', action='store_true', help="Do not use cudnn.benchmark.") |
|
|
241 |
parser.add_argument('--cuda_device', type=int, default=0, help="Index of CUDA device to use.") |
|
|
242 |
parser.add_argument('-d', '--dev', default=False, action='store_true', help="development mode: shorten everything") |
|
|
243 |
|
|
|
244 |
args = parser.parse_args() |
|
|
245 |
folds = args.folds |
|
|
246 |
|
|
|
247 |
torch.backends.cudnn.benchmark = not args.no_benchmark |
|
|
248 |
|
|
|
249 |
########### Creating hdf5 |
|
|
250 |
#if args.mode = 'create_hdf5': |
|
|
251 |
# if folds is None: |
|
|
252 |
# folds = range(cf.n_cv_splits) |
|
|
253 |
|
|
|
254 |
# for fold in folds: |
|
|
255 |
# create_hdf_foldwise_with_batch_generator_for_train/val/test |
|
|
256 |
|
|
|
257 |
|
|
|
258 |
if args.mode == 'train' or args.mode == 'train_test': |
|
|
259 |
|
|
|
260 |
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, args.use_stored_settings) |
|
|
261 |
if args.dev: |
|
|
262 |
folds = [0,1] |
|
|
263 |
cf.batch_size, cf.num_epochs, cf.min_save_thresh, cf.save_n_models = 3 if cf.dim==2 else 1, 1, 0, 2 |
|
|
264 |
cf.num_train_batches, cf.num_val_batches, cf.max_val_patients = 5, 1, 1 |
|
|
265 |
cf.test_n_epochs = cf.save_n_models |
|
|
266 |
cf.max_test_patients = 2 |
|
|
267 |
|
|
|
268 |
cf.data_dest = args.data_dest |
|
|
269 |
logger = utils.get_logger(cf.exp_dir, cf.server_env) |
|
|
270 |
logger.info("cudnn benchmark: {}, deterministic: {}.".format(torch.backends.cudnn.benchmark, |
|
|
271 |
torch.backends.cudnn.deterministic)) |
|
|
272 |
logger.info("sending tensors to CUDA device: {}.".format(torch.cuda.get_device_name(args.cuda_device))) |
|
|
273 |
data_loader = utils.import_module('dl', os.path.join(args.exp_source, 'data_loader.py')) |
|
|
274 |
model = utils.import_module('model', cf.model_path) |
|
|
275 |
logger.info("loaded model from {}".format(cf.model_path)) |
|
|
276 |
if folds is None: |
|
|
277 |
folds = range(cf.n_cv_splits) |
|
|
278 |
|
|
|
279 |
with torch.cuda.device(args.cuda_device): |
|
|
280 |
for fold in folds: |
|
|
281 |
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold)) |
|
|
282 |
cf.fold = fold |
|
|
283 |
cf.resume = args.resume |
|
|
284 |
if not os.path.exists(cf.fold_dir): |
|
|
285 |
os.mkdir(cf.fold_dir) |
|
|
286 |
logger.set_logfile(fold=fold) |
|
|
287 |
train(logger) |
|
|
288 |
|
|
|
289 |
cf.resume = False |
|
|
290 |
if args.mode == 'train_test': |
|
|
291 |
test(logger) |
|
|
292 |
|
|
|
293 |
#Concatenate test results by detection |
|
|
294 |
|
|
|
295 |
if cf.hold_out_test_set == False: |
|
|
296 |
test_frames = [pd.read_pickle(os.path.join(cf.test_dir,f)) for f in os.listdir(cf.test_dir) if '_test_df.pickle' in f] |
|
|
297 |
all_preds = pd.concat(test_frames) |
|
|
298 |
all_preds.to_csv(os.path.join(cf.test_dir,"all_folds_test.csv")) |
|
|
299 |
|
|
|
300 |
#Concatenate detection raw boxes across folds |
|
|
301 |
det_frames = [pd.read_pickle(os.path.join(cf.exp_dir,f,'raw_pred_boxes_list.pickle')) for f in os.listdir(cf.exp_dir) if 'fold_' in f] |
|
|
302 |
all_dets=list() |
|
|
303 |
for i in det_frames: |
|
|
304 |
all_dets.extend(i) |
|
|
305 |
with open(os.path.join(cf.exp_dir, 'all_raw_dets.pickle'), 'wb') as handle: |
|
|
306 |
pickle.dump(all_dets, handle) |
|
|
307 |
|
|
|
308 |
#Concatenate detection wbc boxes across folds |
|
|
309 |
det_frames = [pd.read_pickle(os.path.join(cf.exp_dir,f,'wbc_pred_boxes_list.pickle')) for f in os.listdir(cf.exp_dir) if 'fold_' in f] |
|
|
310 |
all_dets=list() |
|
|
311 |
for i in det_frames: |
|
|
312 |
all_dets.extend(i) |
|
|
313 |
with open(os.path.join(cf.exp_dir, 'all_wbc_dets.pickle'), 'wb') as handle: |
|
|
314 |
pickle.dump(all_dets, handle) |
|
|
315 |
|
|
|
316 |
elif args.mode == 'test': |
|
|
317 |
|
|
|
318 |
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, is_training=False, use_stored_settings=True) |
|
|
319 |
if args.dev: |
|
|
320 |
folds = [0,1] |
|
|
321 |
cf.test_n_epochs = 2; cf.max_test_patients = 2 |
|
|
322 |
|
|
|
323 |
cf.data_dest = args.data_dest |
|
|
324 |
logger = utils.get_logger(cf.exp_dir, cf.server_env) |
|
|
325 |
data_loader = utils.import_module('dl', os.path.join(args.exp_source, 'data_loader.py')) |
|
|
326 |
model = utils.import_module('model', cf.model_path) |
|
|
327 |
logger.info("loaded model from {}".format(cf.model_path)) |
|
|
328 |
if folds is None: |
|
|
329 |
folds = range(cf.n_cv_splits) |
|
|
330 |
|
|
|
331 |
with torch.cuda.device(args.cuda_device): |
|
|
332 |
for fold in folds: |
|
|
333 |
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold)) |
|
|
334 |
cf.fold = fold |
|
|
335 |
logger.set_logfile(fold=fold) |
|
|
336 |
test(logger) |
|
|
337 |
|
|
|
338 |
if cf.hold_out_test_set == False: |
|
|
339 |
test_frames = [pd.read_pickle(os.path.join(cf.test_dir,f)) for f in os.listdir(cf.test_dir) if '_test_df.pickle' in f] |
|
|
340 |
all_preds = pd.concat(test_frames) |
|
|
341 |
all_preds.to_csv(os.path.join(cf.test_dir,"all_folds_test.csv")) |
|
|
342 |
|
|
|
343 |
#Concatenate detection raw boxes across folds |
|
|
344 |
det_frames = [pd.read_pickle(os.path.join(cf.exp_dir,f,'raw_pred_boxes_list.pickle')) for f in os.listdir(cf.exp_dir) if 'fold_' in f] |
|
|
345 |
all_dets=list() |
|
|
346 |
for i in det_frames: |
|
|
347 |
all_dets.extend(i) |
|
|
348 |
with open(os.path.join(cf.exp_dir, 'all_raw_dets.pickle'), 'wb') as handle: |
|
|
349 |
pickle.dump(all_dets, handle) |
|
|
350 |
|
|
|
351 |
#Concatenate detection wbc boxes across folds |
|
|
352 |
det_frames = [pd.read_pickle(os.path.join(cf.exp_dir,f,'wbc_pred_boxes_list.pickle')) for f in os.listdir(cf.exp_dir) if 'fold_' in f] |
|
|
353 |
all_dets=list() |
|
|
354 |
for i in det_frames: |
|
|
355 |
all_dets.extend(i) |
|
|
356 |
with open(os.path.join(cf.exp_dir, 'all_wbc_dets.pickle'), 'wb') as handle: |
|
|
357 |
pickle.dump(all_dets, handle) |
|
|
358 |
|
|
|
359 |
# load raw predictions saved by predictor during testing, run aggregation algorithms and evaluation. |
|
|
360 |
elif args.mode == 'analysis': |
|
|
361 |
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, is_training=False, use_stored_settings=True) |
|
|
362 |
logger = utils.get_logger(cf.exp_dir, cf.server_env) |
|
|
363 |
|
|
|
364 |
if args.dev: |
|
|
365 |
cf.test_n_epochs = 2 |
|
|
366 |
|
|
|
367 |
if cf.hold_out_test_set and cf.ensemble_folds: |
|
|
368 |
# create and save (unevaluated) predictions across all folds |
|
|
369 |
predictor = Predictor(cf, net=None, logger=logger, mode='analysis') |
|
|
370 |
results_list = predictor.load_saved_predictions(apply_wbc=True) |
|
|
371 |
utils.create_csv_output([(res_dict["boxes"], pid) for res_dict, pid in results_list], cf, logger) |
|
|
372 |
logger.info('starting evaluation...') |
|
|
373 |
cf.fold = 'overall_hold_out' |
|
|
374 |
evaluator = Evaluator(cf, logger, mode='test') |
|
|
375 |
evaluator.evaluate_predictions(results_list) |
|
|
376 |
evaluator.score_test_df() |
|
|
377 |
|
|
|
378 |
else: |
|
|
379 |
fold_dirs = sorted([os.path.join(cf.exp_dir, f) for f in os.listdir(cf.exp_dir) if |
|
|
380 |
os.path.isdir(os.path.join(cf.exp_dir, f)) and f.startswith("fold")]) |
|
|
381 |
if folds is None: |
|
|
382 |
folds = range(cf.n_cv_splits) |
|
|
383 |
for fold in folds: |
|
|
384 |
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold)) |
|
|
385 |
cf.fold = fold |
|
|
386 |
logger.set_logfile(fold=fold) |
|
|
387 |
if cf.fold_dir in fold_dirs: |
|
|
388 |
predictor = Predictor(cf, net=None, logger=logger, mode='analysis') |
|
|
389 |
results_list = predictor.load_saved_predictions(apply_wbc=True) |
|
|
390 |
logger.info('starting evaluation...') |
|
|
391 |
evaluator = Evaluator(cf, logger, mode='test') |
|
|
392 |
evaluator.evaluate_predictions(results_list) |
|
|
393 |
evaluator.score_test_df() |
|
|
394 |
else: |
|
|
395 |
logger.info("Skipping fold {} since no model parameters found.".format(fold)) |
|
|
396 |
|
|
|
397 |
# create experiment folder and copy scripts without starting job. |
|
|
398 |
# useful for cloud deployment where configs might change before job actually runs. |
|
|
399 |
elif args.mode == 'create_exp': |
|
|
400 |
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, use_stored_settings=False) |
|
|
401 |
logger = utils.get_logger(cf.exp_dir) |
|
|
402 |
logger.info('created experiment directory at {}'.format(cf.exp_dir)) |
|
|
403 |
|
|
|
404 |
else: |
|
|
405 |
raise RuntimeError('mode specified in args is not implemented...') |
|
|
406 |
|
|
|
407 |
|
|
|
408 |
t = utils.get_formatted_duration(time.time() - stime) |
|
|
409 |
logger.info("{} total runtime: {}".format(os.path.split(__file__)[1], t)) |
|
|
410 |
del logger |