Diff of /README.md [000000] .. [3f73f3]

Switch to unified view

a b/README.md
1
# Auto-WCEBleedGen-Challenge
2
This repository contains our submission for the Auto-WCEBleedGen Challenge. The primary objective of this challenge was to develop a classification and detection model capable of distinguishing between bleeding and non-bleeding frames in wireless capsule endoscopy (WCE) images. In this README, we provide an overview of the project, the achieved evaluation metrics, and visualizations of the model's performance on validation and testing datasets.
3
4
## Team Name: Techy Bots
5
6
## Model Used
7
We employed the YOLOv8 model architecture for this task. We merged both the bleeding and non-bleeding images. The bleeding images follow the naming convention 'img- (n)', while the non-bleeding images are labeled as 'imgnb- (n)', where '(n)' represents a numerical identifier.
8
9
**Code and Model Location**
10
- The code for training the model can be found in the 'MODEL' folder of this repository.
11
- The trained model itself is available in the same 'MODEL' folder.
12
13
**Testing Results**
14
- Results for the test dataset are located in the 'RESULT' folder.
15
16
### Key Highlights
17
**Classification and Detection:** Our model not only classifies images but also detects bleeding regions with bounding boxes and confidence levels.
18
<br> **Data Merging:** We merged bleeding and non-bleeding images during training to improve model generalization.
19
20
# Evaluation Metrics
21
## Classification Metrics
22
We have evaluated the classification model using the following metrics on the validation dataset:
23
Metric                 | Value
24
---------------------- | -------------
25
Accuracy               | 93.32
26
Recall - Bleeding      | 87.78
27
Recall - Non-Bleeding  | 98.85
28
F1 Score               | 92.92
29
30
## Detection Metrics
31
The detection model's performance on the validation dataset is assessed using the following metrics:
32
Metric                            | Value
33
--------------------------------- | -------------
34
Average Precision - Bleeding      | 77.39
35
Average Precision - Non-Bleeding  | 33.33
36
Mean Average Precision            | 55.36
37
Intersection over Union           | 16.93
38
39
![image](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/bf0538cf-e05c-40d6-9eb4-1bfc6e0dfc4d)
40
41
# Validation Dataset Results
42
## Classification and Detection Visualizations
43
Here are screenshots/pictures of the top 10 images selected from the validation dataset, showcasing both the classification results and detection results with bounding boxes and confidence levels:
44
Format (Bounded Boxes Confidence Label)
45
46
### Image-1 ID: img- (6)
47
![img- (6)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/627f345e-9f88-453f-9f55-8fabbb82280d)
48
<br> Bleeding Frame
49
<br> tensor([[131.00000, 170.00000, 203.00000, 215.00000,   0.38539,   0.00000]])
50
<br> tensor([[131.00000, 148.00000, 204.00000, 216.00000,   0.27617,   0.00000]])
51
52
### Image-2 ID: img- (12)
53
![img- (12)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/fcf5e84a-7c90-4ee6-b7b4-13cb748395f6)
54
<br> Bleeding Frame
55
<br> tensor([[ 75.00000, 156.00000, 178.00000, 220.00000,   0.56155,   0.00000]])
56
57
### Image-3 ID: img- (77)
58
![img- (77)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/715b16c2-7d5c-40cf-a04a-4dd77e4e1e44)
59
<br> Bleeding Frame
60
<br> tensor([[145.00000,  22.00000, 193.00000,  86.00000,   0.51087,   0.00000]])
61
62
### Image-4 ID: img- (215)
63
![img- (215)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/b93d1f0c-d556-44f3-84d8-6508849e37e0)
64
<br> Bleeding Frame
65
<br> tensor([[110.00000, 132.00000, 205.00000, 158.00000,   0.69729,   0.00000]])
66
67
### Image-5 ID: img- (391)
68
![img- (391)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/e1046a41-221a-468f-a323-c85fb13de09e)
69
<br> Bleeding Frame
70
<br> tensor([[  9.00000,  15.00000, 222.00000, 224.00000,   0.89529,   0.00000]])
71
72
### Image-6 ID: img- (676)
73
![img- (676)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/80f27599-6055-4838-8681-256bb17ec2c1)
74
<br> Bleeding Frame
75
<br> tensor([[ 67.00000,  33.00000, 150.00000, 123.00000,   0.72962,   0.00000]])
76
77
### Image-7 ID: img- (954)
78
![img- (954)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/3ea3ad3b-4d09-4567-8561-c47cfee4c86b)
79
<br> Bleeding Frame
80
<br> tensor([[ 82.00000,  88.00000, 165.00000, 154.00000,   0.83264,   0.00000]])
81
82
### Image-8 ID: img- (1078)
83
![img- (1078)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/4d6b47b3-078d-41f9-af82-f82cc98d1f51)
84
<br> Bleeding Frame
85
<br> tensor([[ 46.00000,  79.00000,  74.00000, 127.00000,   0.68358,   0.00000]])
86
<br> tensor([[ 83.00000, 144.00000, 160.00000, 192.00000,   0.49040,   0.00000]])
87
<br> tensor([[135.00000,  41.00000, 176.00000, 105.00000,   0.27353,   0.00000]])
88
89
### Image-9 ID: img- (1146)
90
![img- (1146)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/4fa9bb6e-d54d-4092-bcff-0ac6dcc2bf8b)
91
<br> Bleeding Frame
92
<br> tensor([[  1.00000,  43.00000, 119.00000, 161.00000,   0.93680,   0.00000]])
93
94
### Image-10 ID: img- (1213)
95
![img- (1213)](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/0808bcd9-ef80-407e-8b0c-3b077d57a05e)
96
<br> Bleeding Frame
97
<br> tensor([[10.00000,  0.00000, 68.00000, 91.00000,  0.84781,  0.00000]])
98
99
100
# Testing Dataset Results
101
## Classification and Detection Visualizations
102
We have also tested the model on two separate testing datasets (Test Dataset 1 and Test Dataset 2). Here are screenshots/pictures of the top 5 images selected from each testing dataset, showing both the classification results and detection results with bounding boxes and confidence levels:
103
Format (Bounded Boxes Confidence Label)
104
105
## From Test_Dataset_1
106
107
### Image-1 ID: A0005
108
![A0005](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/18d99bc7-799a-44e1-a2a7-f08f6e4b09ad)
109
<br> Bleeding Frame
110
<br> tensor([[ 72.00000, 134.00000,  94.00000, 157.00000,   0.37013,   0.00000]])
111
112
### Image-2 ID: A0025
113
![A0025](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/d0c9ae00-05a0-4e5b-b080-bfe70458bc29)
114
<br> Bleeding Frame
115
<br> tensor([[ 65.00000,   1.00000, 127.00000,  85.00000,   0.35578,   0.00000]])
116
117
### Image-3 ID: A0026
118
![A0026](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/f2920176-89f9-48ac-8283-8349e7ac184b)
119
<br> Bleeding Frame
120
<br> tensor([[ 82.00000,  14.00000, 131.00000,  94.00000,   0.42494,   0.00000]])
121
122
### Image-4 ID: A0037
123
![A0037](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/cee29a6f-ec1c-4052-b587-3c71e9f0922b)
124
<br> Bleeding Frame
125
<br> tensor([[ 96.00000,   3.00000, 222.00000,  80.00000,   0.34570,   0.00000]])
126
127
### Image-5 ID: A0046
128
![A0046](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/c12a026a-3a06-4391-9b7a-28703bd04b72)
129
<br> Bleeding Frame
130
<br> tensor([[ 43.00000,  90.00000, 132.00000, 157.00000,   0.38476,   0.00000]])
131
132
## From Test_Dataset_2
133
134
### Image-1 ID: A0141
135
![A0141](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/6ba288e3-9f12-48b5-a864-ab57b19b8fa0)
136
<br> Bleeding Frame
137
<br> tensor([[ 34.00000,   2.00000, 204.00000, 222.00000,   0.70168,   0.00000]])
138
139
### Image-2 ID: A0375
140
![A0375](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/5afcfdef-0a1b-44f0-a9c3-746e4a54a60b)
141
<br> Bleeding Frame
142
<br> tensor([[ 72.00000,   0.00000, 127.00000,  68.00000,   0.78682,   0.00000]])
143
144
### Image-3 ID: A0399
145
![A0399](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/fac89aaf-6289-414d-9b49-12727c494d86)
146
<br> Bleeding Frame
147
<br> tensor([[120.00000,  33.00000, 156.00000, 119.00000,   0.40065,   0.00000]])
148
<br> tensor([[ 51.00000,  18.00000, 157.00000, 162.00000,   0.25606,   0.00000]])
149
150
### Image-4 ID: A0467
151
![A0467](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/5d5e2513-2429-49ab-a6da-4ef39123f372)
152
<br> Bleeding Frame
153
<br> tensor([[ 87.00000, 132.00000, 124.00000, 182.00000,   0.45395,   0.00000]])
154
<br> tensor([[118.00000, 154.00000, 172.00000, 208.00000,   0.39441,   0.00000]])
155
<br> tensor([[ 80.00000, 133.00000, 174.00000, 215.00000,   0.27501,   0.00000]])
156
157
### Image-5 ID: A0484
158
![A0484](https://github.com/Shivam-027/Auto-WCEBleedGen-Challenge/assets/109764676/e00bf7ce-2988-48a1-b878-fc1162b0623e)
159
<br> Bleeding Frame
160
<br> tensor([[111.00000,  69.00000, 132.00000,  92.00000,   0.48386,   0.00000]])