voomDDA.train = function (counts, conditions, normalization = c("TMM", "deseq", "none"), pooled.var = TRUE)
{
normalization = match.arg(normalization)
counts = data.matrix(counts)
p = nrow(counts)
n = ncol(counts)
nclass = length(unique(conditions))
n.class = table(conditions)
if (min(n.class) == 1) {
stop(warning("Warning: a class contains only 1 sample"))
}
#### voom transformation steps
{
if (normalization == "TMM"){
design = model.matrix(~conditions)
rownames(design) = colnames(counts)
dge = DGEList(counts = counts)
dge = calcNormFactors(dge, method = "TMM")
vm = voom(dge, design, plot=F)
x = vm $ E #pxn dim gene expression matrix
w = vm $ weights #pxn dim weight matrix
dimnames(w) = dimnames(x)
}
else if (normalization == "deseq"){
design = model.matrix(~conditions)
rownames(design) = colnames(counts)
dge = DGEList(counts = counts)
dge = calcNormFactors(dge, method = "RLE")
vm = voom(dge, design, plot=F)
x = vm $ E #pxn dim gene expression matrix
w = vm $ weights #pxn dim weight matrix
dimnames(w) = dimnames(x)
}
else {
design = model.matrix(~conditions)
rownames(design) = colnames(counts)
vm = voom(counts, design, plot=F)
x = vm $ E #pxn dim gene expression matrix
w = vm $ weights #pxn dim weight matrix
dimnames(w) = dimnames(x)
}
}
if(is.factor(conditions)) classNames = levels(conditions)
wStats = weighted.stats(x, w, conditions)
results = structure(list(counts = counts, conditions = factor(conditions), weightedStats = wStats, normalization = normalization,
nclass = nclass, classNames = classNames, PooledVar = pooled.var), class = "voomDDA")
return(results)
}