|
a |
|
b/server.R |
|
|
1 |
shinyServer(function(input, output, session) { |
|
|
2 |
options(shiny.maxRequestSize=500*1024^2) |
|
|
3 |
library(edgeR) |
|
|
4 |
library(limma) |
|
|
5 |
library(DESeq2) |
|
|
6 |
library(caret) |
|
|
7 |
library(kernlab) |
|
|
8 |
library(randomForest) |
|
|
9 |
library(sSeq) |
|
|
10 |
library(plyr) |
|
|
11 |
library(pamr) |
|
|
12 |
library(sfsmisc) |
|
|
13 |
library(foreach) |
|
|
14 |
library(digest) |
|
|
15 |
library(RColorBrewer) |
|
|
16 |
library(gplots) |
|
|
17 |
library(d3heatmap) |
|
|
18 |
library(igraph) |
|
|
19 |
library(DT) |
|
|
20 |
library(miRNAtap) |
|
|
21 |
library(topGO) |
|
|
22 |
library(org.Hs.eg.db) |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
source("allFunctions.R") |
|
|
26 |
|
|
|
27 |
## Source codes of PLDA (Witten et. al.) |
|
|
28 |
source("Classify.cv.R") |
|
|
29 |
source("Classify.R") |
|
|
30 |
source("CountDataSet.R") |
|
|
31 |
source("FindBestTransform.R") |
|
|
32 |
source("Functions.R") |
|
|
33 |
source("NullModel.R") |
|
|
34 |
source("NullModelTest.R") |
|
|
35 |
source("PoissonDistance.R") |
|
|
36 |
|
|
|
37 |
## Source codes of NBLDA |
|
|
38 |
source("classnb.R") |
|
|
39 |
source("CountDataSet1.R") |
|
|
40 |
source("GetDnb.R") |
|
|
41 |
|
|
|
42 |
## Source codes of voom classifiers |
|
|
43 |
source("voomGSD.R") |
|
|
44 |
source("weighted.stats.R") |
|
|
45 |
source("voomNSC.train.R") |
|
|
46 |
source("predict.voomNSC.R") |
|
|
47 |
source("voomDDA.train.R") |
|
|
48 |
source("predict.voomDDA.R") |
|
|
49 |
|
|
|
50 |
observe({ |
|
|
51 |
if (input$varF){ |
|
|
52 |
dat = t(dataM()) |
|
|
53 |
nZ = nearZeroVar(dat,saveMetrics = FALSE) |
|
|
54 |
updateTextInput(session, inputId = "maxVar", label = "Number of genes with maximum variance", value = as.character(ncol(dat) - length(nZ))) |
|
|
55 |
} |
|
|
56 |
}) |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
dataM <- reactive({ ## Data input. |
|
|
60 |
if(input$dataInput==1){ ## Load example data. |
|
|
61 |
|
|
|
62 |
if(input$sampleData==1){ |
|
|
63 |
data <- read.table("cervical_train.txt", header=TRUE) |
|
|
64 |
} |
|
|
65 |
|
|
|
66 |
else if(input$sampleData==2){ |
|
|
67 |
data <- read.table("lung_train.txt", header=TRUE) |
|
|
68 |
} |
|
|
69 |
} |
|
|
70 |
|
|
|
71 |
else if(input$dataInput==2){ ## Upload data. Train |
|
|
72 |
|
|
|
73 |
inFile <- input$uploadTrain |
|
|
74 |
mySep <- switch(input$fileSepDF, '1'=",",'2'="\t",'3'=";", '4'="") |
|
|
75 |
|
|
|
76 |
if (is.null(input$uploadTrain)) {return(NULL)} |
|
|
77 |
|
|
|
78 |
if (file.info(inFile$datapath)$size <= 10485800){ |
|
|
79 |
data <- read.table(inFile$datapath, sep=mySep, header=TRUE, fill=TRUE, na.strings = c("", "NA",".")) |
|
|
80 |
} |
|
|
81 |
|
|
|
82 |
else print("File is bigger than 10MB and will not be uploaded.") |
|
|
83 |
} |
|
|
84 |
return(data) |
|
|
85 |
}) |
|
|
86 |
|
|
|
87 |
dataC <- reactive({ ## Data input. Conditions |
|
|
88 |
if(input$dataInput==1){ ## Load example data. |
|
|
89 |
|
|
|
90 |
if(input$sampleData==1){ |
|
|
91 |
data <- read.table("cervical_cond.txt", header=FALSE, sep="\t") |
|
|
92 |
} |
|
|
93 |
|
|
|
94 |
else if(input$sampleData==2){ |
|
|
95 |
data <- read.table("lung_cond.txt", header=FALSE, sep="\t") |
|
|
96 |
} |
|
|
97 |
} |
|
|
98 |
|
|
|
99 |
if(input$dataInput==2){ ## Upload data. |
|
|
100 |
|
|
|
101 |
inFile <- input$uploadCond |
|
|
102 |
mySep <- switch(input$fileSepDF, '1'=",",'2'="\t",'3'=";", '4'="") |
|
|
103 |
|
|
|
104 |
if (is.null(input$uploadCond)) {return(NULL)} |
|
|
105 |
|
|
|
106 |
if (file.info(inFile$datapath)$size <= 10485800){ |
|
|
107 |
data <- read.table(inFile$datapath, sep=mySep, header=FALSE, fill=TRUE, na.strings = c("", "NA","."), |
|
|
108 |
stringsAsFactors = TRUE, colClasses = "character") |
|
|
109 |
} |
|
|
110 |
|
|
|
111 |
else print("File is bigger than 10MB and will not be uploaded.") |
|
|
112 |
} |
|
|
113 |
return(data) |
|
|
114 |
}) |
|
|
115 |
|
|
|
116 |
dataT <- reactive({ ## Data input. |
|
|
117 |
|
|
|
118 |
if(input$dataInput==1){ ## Load example data. |
|
|
119 |
|
|
|
120 |
if(input$sampleData==1){ |
|
|
121 |
data <- read.table("cervical_test.txt", header=TRUE) |
|
|
122 |
} |
|
|
123 |
|
|
|
124 |
else if(input$sampleData==2){ |
|
|
125 |
data <- read.table("lung_test.txt", header=TRUE) |
|
|
126 |
} |
|
|
127 |
} |
|
|
128 |
|
|
|
129 |
if(input$dataInput==2){ ## Upload data. |
|
|
130 |
|
|
|
131 |
inFile <- input$uploadTest |
|
|
132 |
mySep <- switch(input$fileSepDF, '1'=",",'2'="\t",'3'=";", '4'="") |
|
|
133 |
|
|
|
134 |
if (is.null(input$uploadTest)) {return(NULL)} |
|
|
135 |
|
|
|
136 |
if (file.info(inFile$datapath)$size <= 10485800){ |
|
|
137 |
data <- read.table(inFile$datapath, sep=mySep, header=TRUE, fill=TRUE, na.strings = c("", "NA",".")) |
|
|
138 |
} |
|
|
139 |
|
|
|
140 |
else print("File is bigger than 10MB and will not be uploaded.") |
|
|
141 |
} |
|
|
142 |
return(data) |
|
|
143 |
}) |
|
|
144 |
|
|
|
145 |
|
|
|
146 |
output$RawDataTrain <- DT::renderDataTable({ |
|
|
147 |
dataTrain <- dataM() |
|
|
148 |
conditions <- dataC()[,1] |
|
|
149 |
dataTrain <- dataTrain[order(rownames(dataTrain)),] |
|
|
150 |
|
|
|
151 |
col_dots = rep("...", 10) |
|
|
152 |
row_dots = rep("...", 15) |
|
|
153 |
|
|
|
154 |
## Buraya data wiev için bir fonsiyon yazılacak. |
|
|
155 |
rawTrain = rbind(data.frame(dataTrain[1:8, c(1:12)], col_dots = rep("...", 8), |
|
|
156 |
dataTrain[1:8, c(dim(dataTrain)[2]-1, dim(dataTrain)[2])]), |
|
|
157 |
row_dots, cbind(dataTrain[c(dim(dataTrain)[1]-1,dim(dataTrain)[1]), 1:12], col_dots = c("...","..."), |
|
|
158 |
dataTrain[c(dim(dataTrain)[1]-1,dim(dataTrain)[1]), c(dim(dataTrain)[2]-1, |
|
|
159 |
dim(dataTrain)[2])])) |
|
|
160 |
return(rawTrain) |
|
|
161 |
|
|
|
162 |
|
|
|
163 |
|
|
|
164 |
}) |
|
|
165 |
|
|
|
166 |
|
|
|
167 |
output$RawDataTest <- DT::renderDataTable({ |
|
|
168 |
dataTest <- dataT() |
|
|
169 |
dataTest <- dataTest[order(rownames(dataTest)),] |
|
|
170 |
|
|
|
171 |
return(dataTest) |
|
|
172 |
|
|
|
173 |
|
|
|
174 |
|
|
|
175 |
}) |
|
|
176 |
|
|
|
177 |
|
|
|
178 |
output$trainConsole <- renderPrint({ |
|
|
179 |
|
|
|
180 |
if(input$runVoomDDA){ |
|
|
181 |
dataTrain <- dataM() |
|
|
182 |
conditions <- as.factor(dataC()[,1]) |
|
|
183 |
dataTest <- dataT() |
|
|
184 |
dataTrain <- dataTrain[order(rownames(dataTrain)),] |
|
|
185 |
dataTest <- dataTest[order(rownames(dataTest)),] |
|
|
186 |
|
|
|
187 |
## Control steps |
|
|
188 |
trGenes <- sort(rownames(dataTrain)) |
|
|
189 |
tsGenes <- sort(rownames(dataTest)) |
|
|
190 |
|
|
|
191 |
if (!identical(trGenes, tsGenes)) stop(warning("Gene names should be identical for both training and test data sets.")) |
|
|
192 |
if (ncol(dataTrain) != length(conditions)) stop(warning("Number of conditions and sample size do not match.")) |
|
|
193 |
|
|
|
194 |
## Filtering |
|
|
195 |
|
|
|
196 |
if (input$nearZeroF){ |
|
|
197 |
nZ = nearZeroVar(t(dataTrain),saveMetrics = FALSE) |
|
|
198 |
if(length(nZ) != 0){ |
|
|
199 |
dataTrain = dataTrain[-nZ,] |
|
|
200 |
dataTest = dataTest[-nZ,] |
|
|
201 |
} |
|
|
202 |
} |
|
|
203 |
|
|
|
204 |
if (input$varF){ |
|
|
205 |
## Variance Filtering |
|
|
206 |
vars = apply(log(dataTrain+1),1,var) |
|
|
207 |
idx = order(vars, decreasing = TRUE) |
|
|
208 |
dataTrain <- dataTrain[idx[1:input$maxVar],] |
|
|
209 |
dataTest <- dataTest[rownames(dataTrain),] |
|
|
210 |
} |
|
|
211 |
|
|
|
212 |
### |
|
|
213 |
if (input$models == "vDLDA") model = voomDDA.train(counts = dataTrain, conditions = conditions, normalization = input$normMeth, TRUE) |
|
|
214 |
if (input$models == "vDQDA") model = voomDDA.train(counts = dataTrain, conditions = conditions, normalization = input$normMeth, FALSE) |
|
|
215 |
if (input$models == "vNSC") model = voomNSC.train(counts = dataTrain, conditions = conditions, normalization = input$normMeth) |
|
|
216 |
|
|
|
217 |
cat("Model Summary:", "\n") |
|
|
218 |
cat("-----------------------------------------","\n") |
|
|
219 |
cat(paste("Raw Data"),"\n") |
|
|
220 |
cat(paste(" Data includes the read counts of ", dim(dataM())[1], " genes belong to ", dim(dataM())[2], " observations.", sep=""),"\n\n") |
|
|
221 |
|
|
|
222 |
if (input$nearZeroF){ |
|
|
223 |
cat(paste("Near-zero filtering"), "\n") |
|
|
224 |
cat(paste(" ", length(nZ), " out of ", dim(dataM())[1]," genes are filtered.", sep=""), "\n\n") |
|
|
225 |
} |
|
|
226 |
|
|
|
227 |
if (input$varF){ |
|
|
228 |
cat(paste("Variance filtering"), "\n") |
|
|
229 |
cat(paste(" ", input$maxVar, " genes are selected based on their maximum variance.",sep=""), "\n") |
|
|
230 |
} |
|
|
231 |
cat("-----------------------------------------","\n\n") |
|
|
232 |
|
|
|
233 |
|
|
|
234 |
if ("trSummary" %in% input$advOpts){ |
|
|
235 |
if (input$models != "vNSC") trainSummary <- caret::confusionMatrix(table(Actual = conditions, Predicted = predict.voomDDA(model, dataTrain))) |
|
|
236 |
if (input$models == "vNSC") trainSummary <- caret::confusionMatrix(table(Actual = conditions, Predicted = predict.voomNSC(model, dataTrain))) |
|
|
237 |
|
|
|
238 |
cat("Training Summary:","\n") |
|
|
239 |
cat("-----------------------------------------","\n") |
|
|
240 |
caret:::print.confusionMatrix(trainSummary) |
|
|
241 |
cat("-----------------------------------------","\n\n") |
|
|
242 |
} |
|
|
243 |
|
|
|
244 |
if (input$models != "vNSC") Predicted = predict.voomDDA(model, dataTest) |
|
|
245 |
if (input$models == "vNSC") Predicted = predict.voomNSC(model, dataTest) |
|
|
246 |
|
|
|
247 |
cat("Predictions:","\n") |
|
|
248 |
cat("-----------------------------------------","\n") |
|
|
249 |
cat(paste(c(" ", as.character(Predicted)), sep=""), "\n\n") |
|
|
250 |
|
|
|
251 |
if ("selGenes" %in% input$advOpts){ |
|
|
252 |
if (input$models == "vNSC"){ |
|
|
253 |
selectedGenes <- model$SelectedGenes[[which(model$threshold == model$opt.threshold)]] |
|
|
254 |
cat(paste("Selected Genes (voomNSC): ", length(selectedGenes), " out of ", dim(dataTrain)[1], " genes are selected", sep=""),"\n") |
|
|
255 |
cat("-----------------------------------------","\n") |
|
|
256 |
cat(paste(selectedGenes,"\n")) |
|
|
257 |
}} |
|
|
258 |
|
|
|
259 |
|
|
|
260 |
heatMapData <- reactive({ |
|
|
261 |
|
|
|
262 |
|
|
|
263 |
if (input$models == "vNSC"){ |
|
|
264 |
nSelFeat <- length(selectedGenes) |
|
|
265 |
if (nSelFeat < 2) stop(warning("At least 2 features should be selected in the model. Heatmap can not be drawn with 1 feature.")) |
|
|
266 |
} |
|
|
267 |
|
|
|
268 |
dataTrain_HM <- dataM() |
|
|
269 |
HM_data <- t(log2(t(dataTrain_HM + 0.5)/(apply(dataTrain_HM, 2, sum) + 1) * 1e+06)) |
|
|
270 |
|
|
|
271 |
if (input$models == "vNSC") HM_data <- HM_data[selectedGenes,] |
|
|
272 |
if (input$models != "vNSC") HM_data <- HM_data[rownames(dataTrain),] |
|
|
273 |
|
|
|
274 |
if (input$centerHeat) HM_data <- scale(as.matrix(HM_data), scale = FALSE) |
|
|
275 |
hmcol = colorRampPalette(brewer.pal(8, "GnBu"))(250) |
|
|
276 |
|
|
|
277 |
|
|
|
278 |
return(HM_data) |
|
|
279 |
}) |
|
|
280 |
|
|
|
281 |
|
|
|
282 |
|
|
|
283 |
|
|
|
284 |
|
|
|
285 |
output$heatMap <- renderD3heatmap({ |
|
|
286 |
if ((input$runHeatMap)){ |
|
|
287 |
|
|
|
288 |
#heatmap.2(HM_data, col = hmcol, trace="none", margin=c(10, 6)) |
|
|
289 |
if(input$darkTheme){ |
|
|
290 |
d3heatmap(heatMapData(), theme = "dark", color = input$colorsHM, width = "800px", height = "1800px") |
|
|
291 |
}else{ |
|
|
292 |
|
|
|
293 |
d3heatmap(heatMapData(), theme = "", color = input$colorsHM, width = "800px", height = "1800px") |
|
|
294 |
|
|
|
295 |
} |
|
|
296 |
} |
|
|
297 |
|
|
|
298 |
})#, height = 800, width = 800) |
|
|
299 |
|
|
|
300 |
|
|
|
301 |
output$newtwork <- renderPlot({ |
|
|
302 |
|
|
|
303 |
if ((input$runNetwork)){ |
|
|
304 |
cor_mat = cor = cor(t(heatMapData())) |
|
|
305 |
diag(cor_mat)<-0 |
|
|
306 |
graph<-graph.adjacency(cor_mat,weighted=TRUE,mode="upper") |
|
|
307 |
E(graph)[ weight>0.7 ]$color <- "green" |
|
|
308 |
E(graph)[ weight < -0.7 ]$color <- "red" |
|
|
309 |
E(graph)[ weight>0.6 & weight < 0.7 ]$color <- "black" |
|
|
310 |
E(graph)[ weight< -0.6 & weight > -0.7 ]$color <- "black" |
|
|
311 |
plot(graph) |
|
|
312 |
} |
|
|
313 |
|
|
|
314 |
}, height = 650, width = 650) |
|
|
315 |
|
|
|
316 |
|
|
|
317 |
|
|
|
318 |
if(input$models == "vNSC"){ |
|
|
319 |
observe({ |
|
|
320 |
updateSelectInput(session, "showResults", choices = selectedGenes[3:length(selectedGenes)], selected = selectedGenes[3:length(selectedGenes)][1]) |
|
|
321 |
}) |
|
|
322 |
} |
|
|
323 |
|
|
|
324 |
observe({ |
|
|
325 |
if(input$goAlgorithm == "classic" || input$goAlgorithm == "elim" || input$goAlgorithm == "weight01" || input$goAlgorithm == "lea"){ |
|
|
326 |
|
|
|
327 |
updateSelectInput(session, "goStatistic", choices = c("ks"="ks", "fisher"="fisher", "t"="t", "ks.ties"="ks.ties"), selected = "ks") |
|
|
328 |
}else { |
|
|
329 |
|
|
|
330 |
updateSelectInput(session, "goStatistic", choices = c("fisher"="fisher"), selected = "fisher") |
|
|
331 |
} |
|
|
332 |
}) |
|
|
333 |
|
|
|
334 |
|
|
|
335 |
observe({ |
|
|
336 |
if(input$goGeneAlgorithm == "classic" || input$goGeneAlgorithm == "elim" || input$goGeneAlgorithm == "weight01" || input$goGeneAlgorithm == "lea"){ |
|
|
337 |
|
|
|
338 |
updateSelectInput(session, "goGeneStatistic", choices = c("ks"="ks", "fisher"="fisher", "t"="t", "ks.ties"="ks.ties"), selected = "ks") |
|
|
339 |
}else { |
|
|
340 |
|
|
|
341 |
updateSelectInput(session, "goGeneStatistic", choices = c("fisher"="fisher"), selected = "fisher") |
|
|
342 |
} |
|
|
343 |
}) |
|
|
344 |
|
|
|
345 |
geneOntology <- reactive({ |
|
|
346 |
|
|
|
347 |
if(input$runRNAGO && input$miRNAorGene == 1){ |
|
|
348 |
mir = input$showResults |
|
|
349 |
predictions = getPredictedTargets(mir, species = 'hsa', method = 'geom', min_src = 2) |
|
|
350 |
rankedGenes = predictions[,'rank_product'] |
|
|
351 |
selection = function(x) TRUE |
|
|
352 |
allGO2genes = annFUN.org(whichOnto=input$ontology, feasibleGenes = NULL, mapping="org.Hs.eg.db", ID = "entrez") |
|
|
353 |
GOdata = new('topGOdata', ontology = input$ontology, allGenes = rankedGenes, |
|
|
354 |
annot = annFUN.GO2genes, GO2genes = allGO2genes, |
|
|
355 |
geneSel = selection, nodeSize=10) |
|
|
356 |
results = runTest(GOdata, algorithm = input$goAlgorithm, statistic = input$goStatistic) |
|
|
357 |
allRes = GenTable(GOdata, statistic = results, orderBy = "statistic", topNodes = input$topRNAs) |
|
|
358 |
allRes = allRes[,c('GO.ID','Term','statistic')] |
|
|
359 |
colnames(allRes)[1] = "GO ID" |
|
|
360 |
colnames(allRes)[3] = input$goStatistic |
|
|
361 |
return(allRes) |
|
|
362 |
|
|
|
363 |
|
|
|
364 |
} |
|
|
365 |
if(input$runGeneGO && input$miRNAorGene == 2){ |
|
|
366 |
data = dataM() |
|
|
367 |
condition = as.factor(dataC()[,1]) |
|
|
368 |
design = model.matrix(~condition) |
|
|
369 |
|
|
|
370 |
dge = DGEList(counts=as.matrix(data), group = condition) |
|
|
371 |
dge = calcNormFactors(dge, method = input$normMeth) #webtool'da var. RLE dediği deseq, TMM dediği TMM, none dediği none |
|
|
372 |
v = voom(dge,design, plot=F) |
|
|
373 |
fit = lmFit(v, design) |
|
|
374 |
fit = eBayes(fit) |
|
|
375 |
res = topTable(fit, coef=ncol(design), number = dim(data)[1]) |
|
|
376 |
geneList = res$adj.P.Val #voomNSC tarafından seçilen genler |
|
|
377 |
names(geneList) = rownames(res) #voomNSC tarafından seçilen genler |
|
|
378 |
biomarkers = selectedGenes #voomNSC tarafından seçilen genler |
|
|
379 |
|
|
|
380 |
truefalse = function(allScore) { |
|
|
381 |
truefalse = is.element(names(geneList), biomarkers) |
|
|
382 |
return(truefalse) |
|
|
383 |
} |
|
|
384 |
|
|
|
385 |
allGO2genes = annFUN.org(whichOnto=input$ontologyGene, feasibleGenes = NULL, |
|
|
386 |
mapping="org.Hs.eg.db", ID = "symbol") |
|
|
387 |
|
|
|
388 |
GOdata = new('topGOdata', ontology = input$ontologyGene, allGenes = geneList, |
|
|
389 |
annot = annFUN.GO2genes, GO2genes = allGO2genes, |
|
|
390 |
geneSel = truefalse, nodeSize=10) |
|
|
391 |
|
|
|
392 |
results = runTest(GOdata, algorithm = input$goGeneAlgorithm, statistic = input$goGeneStatistic) |
|
|
393 |
|
|
|
394 |
allRes = GenTable(GOdata, statistic = results, orderBy = "statistic", topNodes = input$topGenes) |
|
|
395 |
allRes = allRes[,c('GO.ID','Term','statistic')] |
|
|
396 |
colnames(allRes)[1] = "GO ID" |
|
|
397 |
colnames(allRes)[3] = input$goGeneStatistic |
|
|
398 |
return(allRes) |
|
|
399 |
|
|
|
400 |
} |
|
|
401 |
else{ |
|
|
402 |
return(allRes = NULL) |
|
|
403 |
} |
|
|
404 |
|
|
|
405 |
}) |
|
|
406 |
|
|
|
407 |
|
|
|
408 |
|
|
|
409 |
geneOntologyPlot <- reactive({ |
|
|
410 |
|
|
|
411 |
if(input$runVoomDDA){ |
|
|
412 |
if(input$miRNAorGene == 1){ |
|
|
413 |
mir = input$showResults |
|
|
414 |
predictions = getPredictedTargets(mir, species = 'hsa', method = 'geom', min_src = 2) |
|
|
415 |
rankedGenes = predictions[,'rank_product'] |
|
|
416 |
selection = function(x) TRUE |
|
|
417 |
allGO2genes = annFUN.org(whichOnto=input$ontology, feasibleGenes = NULL, mapping="org.Hs.eg.db", ID = "entrez") |
|
|
418 |
GOdata = new('topGOdata', ontology = input$ontology, allGenes = rankedGenes, |
|
|
419 |
annot = annFUN.GO2genes, GO2genes = allGO2genes, |
|
|
420 |
geneSel = selection, nodeSize=10) |
|
|
421 |
results = runTest(GOdata, algorithm = input$goAlgorithm, statistic = input$goStatistic) |
|
|
422 |
showSigOfNodes(GOdata, score(results), firstSigNodes = 5, useInfo = 'all') |
|
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
|
426 |
} |
|
|
427 |
if(input$miRNAorGene == 2){ |
|
|
428 |
data = dataM() |
|
|
429 |
condition = as.factor(dataC()[,1]) |
|
|
430 |
design = model.matrix(~condition) |
|
|
431 |
|
|
|
432 |
dge = DGEList(counts=as.matrix(data), group = condition) |
|
|
433 |
dge = calcNormFactors(dge, method = input$normMeth) #webtool'da var. RLE dediği deseq, TMM dediği TMM, none dediği none |
|
|
434 |
v = voom(dge,design, plot=F) |
|
|
435 |
fit = lmFit(v, design) |
|
|
436 |
fit = eBayes(fit) |
|
|
437 |
res = topTable(fit, coef=ncol(design), number = dim(data)[1]) |
|
|
438 |
geneList = res$adj.P.Val #voomNSC tarafından seçilen genler |
|
|
439 |
names(geneList) = rownames(res) #voomNSC tarafından seçilen genler |
|
|
440 |
biomarkers = selectedGenes #voomNSC tarafından seçilen genler |
|
|
441 |
|
|
|
442 |
truefalse = function(allScore) { |
|
|
443 |
truefalse = is.element(names(geneList), biomarkers) |
|
|
444 |
return(truefalse) |
|
|
445 |
} |
|
|
446 |
|
|
|
447 |
allGO2genes = annFUN.org(whichOnto=input$ontologyGene, feasibleGenes = NULL, |
|
|
448 |
mapping="org.Hs.eg.db", ID = "symbol") |
|
|
449 |
|
|
|
450 |
GOdata = new('topGOdata', ontology = input$ontologyGene, allGenes = geneList, |
|
|
451 |
annot = annFUN.GO2genes, GO2genes = allGO2genes, |
|
|
452 |
geneSel = truefalse, nodeSize=10) |
|
|
453 |
|
|
|
454 |
results = runTest(GOdata, algorithm = input$goGeneAlgorithm, statistic = input$goGeneStatistic) |
|
|
455 |
showSigOfNodes(GOdata, score(results), firstSigNodes = 5, useInfo = 'all') |
|
|
456 |
|
|
|
457 |
} |
|
|
458 |
|
|
|
459 |
} |
|
|
460 |
|
|
|
461 |
}) |
|
|
462 |
|
|
|
463 |
|
|
|
464 |
output$geneOntologyTable <- DT::renderDataTable({ |
|
|
465 |
|
|
|
466 |
if(input$runRNAGO || input$runGeneGO){ |
|
|
467 |
|
|
|
468 |
|
|
|
469 |
datatable(geneOntology(), extensions = c('Buttons','KeyTable', 'Responsive'), options = list( |
|
|
470 |
dom = 'Bfrtip', |
|
|
471 |
buttons = c('copy', 'csv', 'excel', 'pdf', 'print'), keys = FALSE, pageLength = 20 |
|
|
472 |
)) |
|
|
473 |
|
|
|
474 |
|
|
|
475 |
}else{return(NULL)} |
|
|
476 |
|
|
|
477 |
}) |
|
|
478 |
|
|
|
479 |
#output$geneOntologyPlot <- renderPlot({ |
|
|
480 |
|
|
|
481 |
#if(input$includePlot){ |
|
|
482 |
# geneOntologyPlot() |
|
|
483 |
# |
|
|
484 |
# } |
|
|
485 |
#}) |
|
|
486 |
|
|
|
487 |
|
|
|
488 |
output$downloadGoPlot <- downloadHandler( |
|
|
489 |
|
|
|
490 |
filename <- function() { paste('GOplot.pdf') }, |
|
|
491 |
content <- function(file) { |
|
|
492 |
pdf(file) |
|
|
493 |
if(input$runVoomDDA == 0){stop('First, run voomDDA')} |
|
|
494 |
else{ |
|
|
495 |
geneOntologyPlot() |
|
|
496 |
} |
|
|
497 |
dev.off() |
|
|
498 |
}, |
|
|
499 |
contentType = 'application/pdf' |
|
|
500 |
) |
|
|
501 |
|
|
|
502 |
} |
|
|
503 |
}) |
|
|
504 |
|
|
|
505 |
}) |
|
|
506 |
|
|
|
507 |
|
|
|
508 |
|
|
|
509 |
|
|
|
510 |
|