a b/pamr.train.R
1
pamr.train <-
2
function (data, n.threshold = 30, offset.percent = 50, remove.zeros = TRUE) 
3
{
4
  this.call <- match.call()
5
  if (!is.null(data$y)) {
6
    problem.type <- "class"
7
  }
8
 
9
  y <- as.factor(data$y)
10
11
  ytest <- NULL
12
  xtest <- NULL
13
14
  prior <- table(y)/length(y)
15
16
  junk <- nsc(data$x, y = y, offset.percent = offset.percent, n.threshold = n.threshold, prior = prior,
17
              remove.zeros = remove.zeros)
18
  
19
  junk$call <- this.call
20
  junk$problem.type <- problem.type
21
  class(junk) = "pamrtrained"
22
  junk
23
}