--- a +++ b/codes.R @@ -0,0 +1,36 @@ +##################################### + +library(MLSeq) +data(cervical) + +set.seed(12349) +ratio=0.7 +conditions = factor(rep(c("N","T"), c(29,29))) +ind = sample(58, ceiling(58*ratio), FALSE) + +train = cervical[,ind] +test = cervical[,-ind] + +tr.cond = conditions[ind] +ts.cond = conditions[-ind] + +tmmT = voomDDA.train(counts = train, conditions = tr.cond, normalization = "TMM", TRUE) +tmmF = voomDDA.train(counts = train, conditions = tr.cond, normalization = "TMM", FALSE) + +quanT = voomDDA.train(counts = train, conditions = tr.cond, normalization = "quan", TRUE) +quanF = voomDDA.train(counts = train, conditions = tr.cond, normalization = "quan", FALSE) + +noneT = voomDDA.train(counts = train, conditions = tr.cond, normalization = "none", TRUE) +noneF = voomDDA.train(counts = train, conditions = tr.cond, normalization = "none", FALSE) + +tmmNSC = voomNSC.train(counts = train, conditions = tr.cond, normalization = "TMM") +quanNSC = voomNSC.train(counts = train, conditions = tr.cond, normalization = "quan") + +table(ts.cond, predict.voomDDA(tmmT, test)) +table(ts.cond, predict.voomDDA(tmmF, test)) +table(ts.cond, predict.voomDDA(quanT, test)) +table(ts.cond, predict.voomDDA(quanF, test)) +table(ts.cond, predict.voomDDA(noneT, test)) +table(ts.cond, predict.voomDDA(noneF, test)) +table(ts.cond, predict.voomNSC(tmmNSC, test)) +table(ts.cond, predict.voomNSC(quanNSC, test))