Diff of /codes.R [000000] .. [81de4e]

Switch to unified view

a b/codes.R
1
#####################################
2
3
library(MLSeq)
4
data(cervical)
5
6
set.seed(12349)
7
ratio=0.7
8
conditions = factor(rep(c("N","T"), c(29,29)))
9
ind = sample(58, ceiling(58*ratio), FALSE)
10
11
train = cervical[,ind]
12
test = cervical[,-ind]
13
14
tr.cond = conditions[ind]
15
ts.cond = conditions[-ind]
16
17
tmmT = voomDDA.train(counts = train, conditions = tr.cond, normalization = "TMM", TRUE)
18
tmmF = voomDDA.train(counts = train, conditions = tr.cond, normalization = "TMM", FALSE)
19
20
quanT = voomDDA.train(counts = train, conditions = tr.cond, normalization = "quan", TRUE)
21
quanF = voomDDA.train(counts = train, conditions = tr.cond, normalization = "quan", FALSE)
22
23
noneT = voomDDA.train(counts = train, conditions = tr.cond, normalization = "none", TRUE)
24
noneF = voomDDA.train(counts = train, conditions = tr.cond, normalization = "none", FALSE)
25
26
tmmNSC = voomNSC.train(counts = train, conditions = tr.cond, normalization = "TMM")
27
quanNSC = voomNSC.train(counts = train, conditions = tr.cond, normalization = "quan")
28
  
29
table(ts.cond, predict.voomDDA(tmmT, test))
30
table(ts.cond, predict.voomDDA(tmmF, test))
31
table(ts.cond, predict.voomDDA(quanT, test))
32
table(ts.cond, predict.voomDDA(quanF, test))
33
table(ts.cond, predict.voomDDA(noneT, test))
34
table(ts.cond, predict.voomDDA(noneF, test))
35
table(ts.cond, predict.voomNSC(tmmNSC, test))
36
table(ts.cond, predict.voomNSC(quanNSC, test))