[81de4e]: / Codes(02.05.2015).R

Download this file

166 lines (148 with data), 6.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#Calculation of quantile normalization factors necessary for calcNormFactorsGSD function. Same for both train and test sets.
calcFactorQuantileGSD =
function (data, lib.size, p = 0.75)
{
y <- t(t(data)/lib.size)
f <- apply(y, 2, function(x) quantile(x, p = p))
}
#Calculation of weighted normalization factors necessary for calcNormFactorsGSD function.
calcFactorWeightedGSD =
function (obs, ref, libsize.obs = NULL, libsize.ref = NULL, logratioTrim = 0.3,
sumTrim = 0.05, doWeighting = TRUE, Acutoff = -1e+10)
{
if (all(obs == ref))
return(1)
obs <- as.numeric(obs)
ref <- as.numeric(ref)
if (is.null(libsize.obs))
nO <- sum(obs)
else nO <- libsize.obs
if (is.null(libsize.ref))
nR <- sum(ref)
else nR <- libsize.ref
logR <- log2((obs/nO)/(ref/nR))
absE <- (log2(obs/nO) + log2(ref/nR))/2
v <- (nO - obs)/nO/obs + (nR - ref)/nR/ref
fin <- is.finite(logR) & is.finite(absE) & (absE > Acutoff)
logR <- logR[fin]
absE <- absE[fin]
v <- v[fin]
n <- sum(fin)
loL <- floor(n * logratioTrim) + 1
hiL <- n + 1 - loL
loS <- floor(n * sumTrim) + 1
hiS <- n + 1 - loS
keep <- (rank(logR) >= loL & rank(logR) <= hiL) & (rank(absE) >= loS & rank(absE) <= hiS)
if (doWeighting)
2^(sum(logR[keep]/v[keep], na.rm = TRUE)/sum(1/v[keep],na.rm = TRUE))
else 2^(mean(logR[keep], na.rm = TRUE))
}
#Calculation of deseq normalization factors necessary for calcNormFactorsGSD function.
calcFactorRLEGSD =
function (data.train, data.test, lib.size, lib.size.test)
{
gm <- exp(rowMeans(log(data.train)))
f = apply(data.train, 2, function(u) median((u/gm)[gm > 0]))
f.test = apply(data.test, 2, function(u) median((u/gm)[gm > 0]))
f = f / lib.size
f.test = f.test / lib.size.test
deseqsizefactors = list(f,f.test)
return(deseqsizefactors)
}
#Calculation of normalization factors using calcNormFactorsGSD function.
calcNormFactorsGSD =
function (data.train, data.test, lib.size = NULL, method = c("TMM", "deseq", "none"), refColumn = NULL, logratioTrim = 0.3, sumTrim = 0.05,
doWeighting = TRUE, Acutoff = -1e+10, p = 0.75, ...)
{
x <- as.matrix(data.train)
xtest <- as.matrix(data.test)
if (any(is.na(x)||is.na(xtest)))
stop("NAs not permitted")
if (is.null(lib.size))
lib.size <- colSums(x)
lib.size.test <- colSums(xtest)
method <- match.arg(method)
allzero <- rowSums(x > 0) == 0
if (any(allzero))
x <- x[!allzero, , drop = FALSE]
xtest <- xtest[!allzero, , drop = FALSE]
if (nrow(x) == 0 || ncol(x) == 1)
method = "none"
if(method == "TMM"){
f75 <- calcFactorQuantileGSD(data = x, lib.size = lib.size, p = 0.75)
f75.test <- calcFactorQuantileGSD(data = xtest, lib.size = lib.size.test, p = 0.75)
refColumn <- which.min(abs(f75 - mean(f75)))
f <- rep(NA, ncol(x))
f.test <- rep(NA, ncol(xtest))
for (i in 1:ncol(x)) f[i] <- calcFactorWeightedGSD(obs = x[,i], ref = x[, refColumn], libsize.obs = lib.size[i],
libsize.ref = lib.size[refColumn], logratioTrim = logratioTrim,
sumTrim = sumTrim, doWeighting = doWeighting, Acutoff = Acutoff)
for (i in 1:ncol(xtest)) f.test[i] <- calcFactorWeightedGSD(obs = xtest[,i], ref = x[, refColumn], libsize.obs = lib.size.test[i],
libsize.ref = lib.size[refColumn], logratioTrim = logratioTrim,
sumTrim = sumTrim, doWeighting = doWeighting, Acutoff = Acutoff)
normf = list(f,f.test)
}
else if(method == "deseq"){
normf = calcFactorRLEGSD(data.train = x, data.test = xtest, lib.size = lib.size, lib.size.test = lib.size.test)#/lib.size
}
else {
normf = list(rep(1, ncol(x)), rep(1, ncol(xtest)))
}
names(normf) = c("train", "test")
f = as.numeric(normf[[1]]) / (exp(mean(log(normf[[1]]))))
f.test = as.numeric(normf[[2]]) / (exp(mean(log(normf[[1]]))))
normf2 = list(f, f.test, lib.size, lib.size.test)
names(normf2) = c("TrainNormFactor","TestNormFactor","TrainLibSize","TestLibSize")
return(normf2)
}
#traindatayı, testdatayı ve trainclassı alacak, method = TMM, RLE, none olacak.
#train ve test icin voom gibi expression ve weights döndürecek.
voomGSD =
function(data.train, data.test, group, norm.method = c("TMM", "deseq", "none"), design = NULL, lib.size = NULL, span = 0.5)
{
out <- list()
NormFactors = calcNormFactorsGSD(data.train = data.train, data.test = data.test, method = norm.method)
TrainNormFactor = NormFactors$TrainNormFactor
TestNormFactor = NormFactors$TestNormFactor
TrainLibSize = NormFactors$TrainLibSize
TestLibSize = NormFactors$TestLibSize
lib.size.tr = TrainNormFactor * TrainLibSize
lib.size.ts = TestNormFactor * TestLibSize
design.tr = model.matrix(~group)
rownames(design.tr) = colnames(data.train)
design.ts <- matrix(1, ncol(data.test), 1)
rownames(design.ts) <- colnames(data.test)
colnames(design.ts) <- "GrandMean"
y.tr <- t(log2(t(data.train + 0.5)/(lib.size.tr + 1) * 1e+06))
y.ts <- t(log2(t(data.test + 0.5)/(lib.size.ts + 1) * 1e+06))
fit.tr <- lmFit(y.tr, design.tr)
fit.ts <- lmFit(y.ts, design.ts)
if (is.null(fit.tr$Amean))
fit$Amean <- rowMeans(y.tr, na.rm = TRUE)
fit.ts$Amean = fit.tr$Amean
fit.ts$sigma = fit.tr$sigma
fit.ts$coefficients = fit.tr$coefficients[,1]
sx <- fit.tr$Amean + mean(log2(lib.size.tr + 1)) - log2(1e+06)
sy <- sqrt(fit.tr$sigma)
l <- lowess(sx, sy, f = span)
f <- approxfun(l, rule = 2)
fitted.values.tr <- fit.tr$coefficients %*% t(fit.tr$design)
fitted.values.ts <- fit.ts$coefficients %*% t(fit.ts$design)
fitted.cpm.tr <- 2^fitted.values.tr
fitted.cpm.ts <- 2^fitted.values.ts
fitted.count.tr <- 1e-06 * t(t(fitted.cpm.tr) * (lib.size.tr + 1))
fitted.count.ts <- 1e-06 * t(t(fitted.cpm.ts) * (lib.size.ts + 1))
fitted.logcount.tr <- log2(fitted.count.tr)
fitted.logcount.ts <- log2(fitted.count.ts)
w.tr <- 1/f(fitted.logcount.tr)^4
w.ts <- 1/f(fitted.logcount.ts)^4
dim(w.tr) <- dim(fitted.logcount.tr)
dim(w.ts) <- dim(fitted.logcount.ts)
dimnames(w.tr) = dimnames(y.tr)
dimnames(w.ts) = dimnames(y.ts)
out$TrainExp <- y.tr
out$TestExp <- y.ts
out$TrainWeights <- w.tr
out$TestWeights <- w.ts
new("EList", out)
}