|
a |
|
b/notebooks/symlinks_subset.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 2, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import pandas as pd\n", |
|
|
10 |
"import os\n", |
|
|
11 |
"import shutil\n", |
|
|
12 |
"import sys\n", |
|
|
13 |
"import numpy\n", |
|
|
14 |
"import sklearn\n", |
|
|
15 |
"from sklearn.model_selection import train_test_split, cross_val_score\n", |
|
|
16 |
"from sklearn.metrics import accuracy_score, auc, confusion_matrix, f1_score, precision_score, roc_curve" |
|
|
17 |
] |
|
|
18 |
}, |
|
|
19 |
{ |
|
|
20 |
"cell_type": "code", |
|
|
21 |
"execution_count": 3, |
|
|
22 |
"metadata": {}, |
|
|
23 |
"outputs": [], |
|
|
24 |
"source": [ |
|
|
25 |
"import time\n", |
|
|
26 |
"t = time.time()" |
|
|
27 |
] |
|
|
28 |
}, |
|
|
29 |
{ |
|
|
30 |
"cell_type": "code", |
|
|
31 |
"execution_count": 4, |
|
|
32 |
"metadata": {}, |
|
|
33 |
"outputs": [ |
|
|
34 |
{ |
|
|
35 |
"data": { |
|
|
36 |
"text/plain": [ |
|
|
37 |
"(83,)" |
|
|
38 |
] |
|
|
39 |
}, |
|
|
40 |
"execution_count": 4, |
|
|
41 |
"metadata": {}, |
|
|
42 |
"output_type": "execute_result" |
|
|
43 |
} |
|
|
44 |
], |
|
|
45 |
"source": [ |
|
|
46 |
"infile = \"/repos/tables/glom_xml_split.tab\"\n", |
|
|
47 |
"df = pd.read_table(infile, usecols=[\"file_id\", \"split\"])\n", |
|
|
48 |
"# df['png'] = df.file_id.map(lambda x: x+\".png\")\n", |
|
|
49 |
"df = df.set_index(\"file_id\")[\"split\"]\n", |
|
|
50 |
"df.shape" |
|
|
51 |
] |
|
|
52 |
}, |
|
|
53 |
{ |
|
|
54 |
"cell_type": "code", |
|
|
55 |
"execution_count": 5, |
|
|
56 |
"metadata": {}, |
|
|
57 |
"outputs": [], |
|
|
58 |
"source": [ |
|
|
59 |
"# df.set_index('id', inplace=True)\n" |
|
|
60 |
] |
|
|
61 |
}, |
|
|
62 |
{ |
|
|
63 |
"cell_type": "code", |
|
|
64 |
"execution_count": 6, |
|
|
65 |
"metadata": {}, |
|
|
66 |
"outputs": [], |
|
|
67 |
"source": [ |
|
|
68 |
"# indir = \"/repos/data/glom/data_1024/glom_split/all\"\n", |
|
|
69 |
"# indir = \"/repos/data/glom/data_512_subsample_2x/glom_split/all\"\n", |
|
|
70 |
"indir = \"/repos/data/glom/data_256_subsample_4x/glom_split/all\"\n", |
|
|
71 |
"indir = \"/repos/data/glom/data_128_subsample_8x/glom_split/all\"\n", |
|
|
72 |
"outdir = os.path.dirname(indir.rstrip('/'))\n", |
|
|
73 |
"def datagen(indir):\n", |
|
|
74 |
" for dd in os.scandir(indir):\n", |
|
|
75 |
" for ff in os.scandir(dd.path):\n", |
|
|
76 |
"# if os.path.isdir(ff.path) or not (ff.name.endswith(\"png\") or ff.name.endswith(\"json\")):\n", |
|
|
77 |
" if os.path.isdir(ff.path) or not (ff.name.endswith(\"json\")):\n", |
|
|
78 |
" continue\n", |
|
|
79 |
"# print(ff.name.split('-')[0], ff.path)\n", |
|
|
80 |
" yield (ff.name.split('-')[0], ff)\n", |
|
|
81 |
" \n", |
|
|
82 |
"def gen_set(indir, outdir, df):\n", |
|
|
83 |
" for slideid, ff in datagen(indir):\n", |
|
|
84 |
" posnegset = os.path.basename(os.path.dirname(ff.path))\n", |
|
|
85 |
" set_ = df.loc[slideid]\n", |
|
|
86 |
" yield ff.path, os.path.join(outdir, set_, posnegset, ff.name)" |
|
|
87 |
] |
|
|
88 |
}, |
|
|
89 |
{ |
|
|
90 |
"cell_type": "code", |
|
|
91 |
"execution_count": 7, |
|
|
92 |
"metadata": {}, |
|
|
93 |
"outputs": [ |
|
|
94 |
{ |
|
|
95 |
"data": { |
|
|
96 |
"text/plain": [ |
|
|
97 |
"11710" |
|
|
98 |
] |
|
|
99 |
}, |
|
|
100 |
"execution_count": 7, |
|
|
101 |
"metadata": {}, |
|
|
102 |
"output_type": "execute_result" |
|
|
103 |
} |
|
|
104 |
], |
|
|
105 |
"source": [ |
|
|
106 |
"gen = gen_set(indir, outdir, df)\n", |
|
|
107 |
"sum((1 for _ in gen))" |
|
|
108 |
] |
|
|
109 |
}, |
|
|
110 |
{ |
|
|
111 |
"cell_type": "code", |
|
|
112 |
"execution_count": 8, |
|
|
113 |
"metadata": {}, |
|
|
114 |
"outputs": [ |
|
|
115 |
{ |
|
|
116 |
"name": "stdout", |
|
|
117 |
"output_type": "stream", |
|
|
118 |
"text": [ |
|
|
119 |
"/repos/data/glom/data_128_subsample_8x/glom_split/train/normal\n", |
|
|
120 |
"/repos/data/glom/data_128_subsample_8x/glom_split/train/glom\n", |
|
|
121 |
"/repos/data/glom/data_128_subsample_8x/glom_split/test/normal\n", |
|
|
122 |
"/repos/data/glom/data_128_subsample_8x/glom_split/test/glom\n", |
|
|
123 |
"/repos/data/glom/data_128_subsample_8x/glom_split/val/normal\n", |
|
|
124 |
"/repos/data/glom/data_128_subsample_8x/glom_split/val/glom\n" |
|
|
125 |
] |
|
|
126 |
} |
|
|
127 |
], |
|
|
128 |
"source": [ |
|
|
129 |
"posnegset = os.listdir(indir)\n", |
|
|
130 |
"for _, set_ in df.drop_duplicates().items():\n", |
|
|
131 |
" for pn in posnegset:\n", |
|
|
132 |
" setdir = os.path.join(outdir, set_, pn)\n", |
|
|
133 |
" print(setdir)\n", |
|
|
134 |
" os.makedirs(setdir, exist_ok=True)" |
|
|
135 |
] |
|
|
136 |
}, |
|
|
137 |
{ |
|
|
138 |
"cell_type": "code", |
|
|
139 |
"execution_count": 9, |
|
|
140 |
"metadata": {}, |
|
|
141 |
"outputs": [ |
|
|
142 |
{ |
|
|
143 |
"name": "stdout", |
|
|
144 |
"output_type": "stream", |
|
|
145 |
"text": [ |
|
|
146 |
"0\n", |
|
|
147 |
"1000\n", |
|
|
148 |
"2000\n", |
|
|
149 |
"3000\n", |
|
|
150 |
"4000\n", |
|
|
151 |
"5000\n", |
|
|
152 |
"6000\n", |
|
|
153 |
"7000\n", |
|
|
154 |
"8000\n", |
|
|
155 |
"9000\n", |
|
|
156 |
"10000\n", |
|
|
157 |
"11000\n" |
|
|
158 |
] |
|
|
159 |
} |
|
|
160 |
], |
|
|
161 |
"source": [ |
|
|
162 |
"gen = gen_set(indir, outdir, df)\n", |
|
|
163 |
"for nn, (ifn, ofn) in enumerate(gen):\n", |
|
|
164 |
" try:\n", |
|
|
165 |
" os.symlink(ifn, ofn)\n", |
|
|
166 |
" except FileExistsError as ee:\n", |
|
|
167 |
" print(ee)\n", |
|
|
168 |
" continue\n", |
|
|
169 |
" if nn % 1000 == 0:\n", |
|
|
170 |
" print(nn)" |
|
|
171 |
] |
|
|
172 |
}, |
|
|
173 |
{ |
|
|
174 |
"cell_type": "code", |
|
|
175 |
"execution_count": null, |
|
|
176 |
"metadata": {}, |
|
|
177 |
"outputs": [], |
|
|
178 |
"source": [] |
|
|
179 |
} |
|
|
180 |
], |
|
|
181 |
"metadata": { |
|
|
182 |
"kernelspec": { |
|
|
183 |
"display_name": "Python 3", |
|
|
184 |
"language": "python", |
|
|
185 |
"name": "python3" |
|
|
186 |
}, |
|
|
187 |
"language_info": { |
|
|
188 |
"codemirror_mode": { |
|
|
189 |
"name": "ipython", |
|
|
190 |
"version": 3 |
|
|
191 |
}, |
|
|
192 |
"file_extension": ".py", |
|
|
193 |
"mimetype": "text/x-python", |
|
|
194 |
"name": "python", |
|
|
195 |
"nbconvert_exporter": "python", |
|
|
196 |
"pygments_lexer": "ipython3", |
|
|
197 |
"version": "3.5.2" |
|
|
198 |
} |
|
|
199 |
}, |
|
|
200 |
"nbformat": 4, |
|
|
201 |
"nbformat_minor": 2 |
|
|
202 |
} |