[78ef36]: / docs / tutorial7 / index.html

Download this file

492 lines (342 with data), 29.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Tutorial 7: Training with custom augmentations &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Tutorial 8: Multiple-Instance Learning" href="../tutorial8/" />
<link rel="prev" title="Tutorial 6: Custom slide filtering" href="../tutorial6/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>Tutorial 7: Training with custom augmentations</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/tutorial7.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="tutorial-7-training-with-custom-augmentations">
<span id="tutorial7"></span><h1>Tutorial 7: Training with custom augmentations<a class="headerlink" href="#tutorial-7-training-with-custom-augmentations" title="Permalink to this heading"></a></h1>
<p>In this tutorial, we’ll take a look at how you can use custom image augmentations when training a model with Slideflow. This tutorial builds off of <a class="reference internal" href="../tutorial2/#tutorial2"><span class="std std-ref">Tutorial 2: Model training (advanced)</span></a>, so if you haven’t already, you should read that tutorial first.</p>
<p>Our goal will be to train a model on a sparse outcome, such as ER status (roughly 4:1 positive:negative), with a custom augmentation that will oversample the minority class. This tutorial will use PyTorch, but the same principles apply when using Tensorflow.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">os</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">&#39;SF_BACKEND&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;torch&#39;</span>
</pre></div>
</div>
<p>First, we’ll start by loading a project and preparing our datasets, just like in <a class="reference internal" href="../tutorial2/#tutorial2"><span class="std std-ref">Tutorial 2: Model training (advanced)</span></a>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">load_project</span><span class="p">(</span><span class="s1">&#39;/home/er_project&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">full_dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">tile_px</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">filters</span><span class="o">=</span><span class="p">{</span>
<span class="gp">... </span> <span class="s1">&#39;er_status_by_ihc&#39;</span><span class="p">:</span> <span class="p">[</span><span class="s1">&#39;Positive&#39;</span><span class="p">,</span> <span class="s1">&#39;Negative&#39;</span><span class="p">]</span>
<span class="gp">... </span><span class="p">})</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">labels</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">full_dataset</span><span class="o">.</span><span class="n">labels</span><span class="p">(</span><span class="s1">&#39;er_status_by_ihc&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">train</span><span class="p">,</span> <span class="n">val</span> <span class="o">=</span> <span class="n">full_dataset</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">labels</span><span class="o">=</span><span class="s1">&#39;er_status_by_ihc&#39;</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">val_strategy</span><span class="o">=</span><span class="s1">&#39;k-fold&#39;</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">val_k_fold</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">k_fold_iter</span><span class="o">=</span><span class="mi">1</span>
<span class="gp">... </span><span class="p">)</span>
</pre></div>
</div>
<p>If tiles have not yet been extracted from slides, do that now.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">dataset</span><span class="o">.</span><span class="n">extract_tiles</span><span class="p">(</span><span class="n">qc</span><span class="o">=</span><span class="s1">&#39;otsu&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>By default, Slideflow will equally sample from all slides / TFRecords during training, resulting in oversampling of slides with fewer tiles. In this case, we want to oversample the minority class (ER negative), so we’ll use category-level balancing. Sampling strategies are discussed in detail in the <a class="reference internal" href="../dataloaders/#balancing"><span class="std std-ref">Developer Notes</span></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">train</span> <span class="o">=</span> <span class="n">train</span><span class="o">.</span><span class="n">balance</span><span class="p">(</span><span class="s1">&#39;er_status_by_ihc&#39;</span><span class="p">,</span> <span class="n">strategy</span><span class="o">=</span><span class="s1">&#39;category&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Next, we’ll set up our model hyperparameters, using the same parameters as in <a class="reference internal" href="../tutorial2/#tutorial2"><span class="std std-ref">Tutorial 2: Model training (advanced)</span></a>. We still want to use Slideflow’s default augmentation (random flip/rotation and JPEG compression), so we’ll use the hyperparameter <code class="docutils literal notranslate"><span class="pre">augment=True</span></code>. Our custom augmentation will be applied after the default augmentation.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">hp</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">ModelParams</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">tile_px</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">model</span><span class="o">=</span><span class="s1">&#39;xception&#39;</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">epochs</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span>
<span class="gp">... </span> <span class="n">augment</span><span class="o">=</span><span class="kc">True</span>
<span class="gp">... </span><span class="p">)</span>
</pre></div>
</div>
<p>Now, we’ll define our custom augmentation. Augmentations are functions that take a single Tensor (<code class="xref py py-class docutils literal notranslate"><span class="pre">tf.Tensor</span></code> or <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.Tensor</span></code>) as input and return a single Tensor as output. Our training augmentation will include a random color jitter, random gaussian blur, and random auto-contrast.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">torch</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">torchvision</span> <span class="kn">import</span> <span class="n">transforms</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">augment</span> <span class="o">=</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="gp">... </span> <span class="n">transforms</span><span class="o">.</span><span class="n">ColorJitter</span><span class="p">(</span><span class="n">brightness</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">contrast</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">saturation</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">hue</span><span class="o">=</span><span class="mf">0.5</span><span class="p">),</span>
<span class="gp">... </span> <span class="n">transforms</span><span class="o">.</span><span class="n">RandomAutocontrast</span><span class="p">(),</span>
<span class="gp">... </span> <span class="n">transforms</span><span class="o">.</span><span class="n">GaussianBlur</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="gp">... </span><span class="p">])</span>
</pre></div>
</div>
<p>Transformations can be applied to training or validation data by passing a dictionary - with the keys ‘train’ and/or ‘val’ - to the <code class="docutils literal notranslate"><span class="pre">transform</span></code> argument of <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Trainer</span></code>. If a transformation should be applied to both training and validation, it can be passed directly to the <code class="docutils literal notranslate"><span class="pre">transform</span></code> argument. In this case, we’ll apply our custom augmentation to the training dataset only.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">trainer</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">build_trainer</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">hp</span><span class="o">=</span><span class="n">hp</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">outdir</span><span class="o">=</span><span class="s1">&#39;/some/directory&#39;</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">labels</span><span class="o">=</span><span class="n">labels</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">transform</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;train&#39;</span><span class="p">:</span> <span class="n">augment</span><span class="p">},</span>
<span class="gp">... </span><span class="p">)</span>
</pre></div>
</div>
<p>Now we can start training. Pass the training and validation datasets to the <a class="reference internal" href="../model/#slideflow.model.Trainer.train" title="slideflow.model.Trainer.train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.model.Trainer.train()</span></code></a> method of our trainer, assigning the output to a new variable <code class="docutils literal notranslate"><span class="pre">results</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">results</span> <span class="o">=</span> <span class="n">trainer</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">val</span><span class="p">)</span>
</pre></div>
</div>
<p>And that’s it! You’ve trained a model with a custom augmentation. You can now use the model to make predictions on new data, or use the model to make predictions on the validation dataset.</p>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../tutorial8/" class="btn btn-neutral float-right" title="Tutorial 8: Multiple-Instance Learning" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../tutorial6/" class="btn btn-neutral" title="Tutorial 6: Custom slide filtering" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Tutorial 7: Training with custom augmentations</a></li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>