[78ef36]: / docs / tutorial5 / index.html

Download this file

592 lines (435 with data), 36.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Tutorial 5: Creating a mosaic map &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Tutorial 6: Custom slide filtering" href="../tutorial6/" />
<link rel="prev" title="Tutorial 4: Model evaluation &amp; heatmaps" href="../tutorial4/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>Tutorial 5: Creating a mosaic map</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/tutorial5.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="tutorial-5-creating-a-mosaic-map">
<h1>Tutorial 5: Creating a mosaic map<a class="headerlink" href="#tutorial-5-creating-a-mosaic-map" title="Permalink to this heading"></a></h1>
<p>Mosaic maps are useful explainability tools used to describe the landscape of image features a model learned during training. In this tutorial, we will walk through the process of creating a mosaic map, reproducing results similar to what is shown in Figure 5 of <a class="reference external" href="https://arxiv.org/abs/2204.04516">this article by Dolezal et al</a>.</p>
<section id="train-a-model">
<h2>Train a model<a class="headerlink" href="#train-a-model" title="Permalink to this heading"></a></h2>
<p>The first step is to train a model, as described in <a class="reference internal" href="../tutorial1/#tutorial1"><span class="std std-ref">Tutorial 1: Model training (simple)</span></a>. For the purposes of this tutorial, we will assume data has been collected and annotated as described in the referenced manuscript, with models trained to predict lung adenocarcinoma vs. squamous cell carcinoma. We will assume that a project has been initialized at <code class="docutils literal notranslate"><span class="pre">/mnt/data/projects/TCGA_LUNG</span></code> and configured to use whole-slide images from <a class="reference external" href="https://portal.gdc.cancer.gov/">TCGA</a>, with the annotations header <code class="docutils literal notranslate"><span class="pre">'cohort'</span></code> indicating whether a tumor is adenocarcinoma (<code class="docutils literal notranslate"><span class="pre">'LUAD'</span></code>) or squamous (<code class="docutils literal notranslate"><span class="pre">'LUSC'</span></code>). Training models for such a project would look like:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Load a preconfigured project at some directory</span>
<span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Project</span><span class="p">(</span><span class="s1">&#39;/mnt/data/projects/TCGA_LUNG&#39;</span><span class="p">)</span>
<span class="c1"># Extract tiles</span>
<span class="n">P</span><span class="o">.</span><span class="n">extract_tiles</span><span class="p">(</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span>
<span class="n">tile_um</span><span class="o">=</span><span class="mi">302</span><span class="p">,</span>
<span class="n">qc</span><span class="o">=</span><span class="s1">&#39;both&#39;</span>
<span class="p">)</span>
<span class="c1"># Configure model parameters</span>
<span class="n">hp</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">ModelParams</span><span class="p">(</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span>
<span class="n">tile_um</span><span class="o">=</span><span class="mi">302</span><span class="p">,</span>
<span class="n">epochs</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;xception&#39;</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
<span class="o">...</span>
<span class="p">)</span>
<span class="c1"># Train the model</span>
<span class="c1"># using three-fold cross-validation</span>
<span class="n">P</span><span class="o">.</span><span class="n">train</span><span class="p">(</span>
<span class="s1">&#39;cohort&#39;</span><span class="p">,</span>
<span class="n">params</span><span class="o">=</span><span class="n">hp</span><span class="p">,</span>
<span class="n">val_strategy</span><span class="o">=</span><span class="s1">&#39;k-fold&#39;</span><span class="p">,</span>
<span class="n">val_k_fold</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
<section id="locate-a-saved-model">
<h2>Locate a saved model<a class="headerlink" href="#locate-a-saved-model" title="Permalink to this heading"></a></h2>
<p>Once training is finished, locate the model from the first k-fold split in your project’s model directory. For the Tensorflow backend, the saved model would look like:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>models/
├── 00001-cohort-HP0-kfold1 /
│ ├── cohort-HP0-epoch1/
...
...
</pre></div>
</div>
<p>And for PyTorch:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>models/
├── 00001-cohort-HP0-kfold1 /
│ ├── cohort-HP0-epoch1.zip
...
...
</pre></div>
</div>
</section>
<section id="generate-layer-activations">
<h2>Generate layer activations<a class="headerlink" href="#generate-layer-activations" title="Permalink to this heading"></a></h2>
<p>The next step is to calculate layer activations for images in the model’s validation dataset. First, let’s find the slides belonging to our model’s validation dataset:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">slideflow.util</span> <span class="kn">import</span> <span class="n">get_slides_from_model_manifest</span>
<span class="c1"># Path to the saved model</span>
<span class="n">model_path</span> <span class="o">=</span> <span class="o">...</span>
<span class="c1"># Read the list of validation slides</span>
<span class="n">val_slides</span> <span class="o">=</span> <span class="n">get_slides_from_model_manifest</span><span class="p">(</span>
<span class="n">model_path</span><span class="p">,</span>
<span class="n">dataset</span><span class="o">=</span><span class="s1">&#39;validation&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p>We can then calculate layer activations from these validation slides. For this experiment, we will be calculating layer activations from the post-convolutional layer (after pooling). Any combination of layers can be chosen, requiring only that you past a list of layer names to the argument <code class="docutils literal notranslate"><span class="pre">layers</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Calculate layer activations</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span>
<span class="n">model_path</span><span class="p">,</span>
<span class="n">filters</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;slide&#39;</span><span class="p">:</span> <span class="n">val_slides</span><span class="p">},</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;postconv&#39;</span><span class="p">]</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Calculating layer activations may take a substantial amount of time depending on the dataset size and your computational infrastructure. Layer activations can be cached after calculation using the <code class="docutils literal notranslate"><span class="pre">cache</span></code> argument. If provided, a <code class="docutils literal notranslate"><span class="pre">DatasetFeatures</span></code> object will store activations in this pkl file, and if the script is run again, activations will be automatically loaded from cache.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">df</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">cache</span><span class="o">=</span><span class="s1">&#39;activations.pkl&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Layer activations calculated on very large datasets may result in high memory usage, as each slide may have thousands of image tiles or more. To cap the maximum number of tiles to use per slide, use the <code class="docutils literal notranslate"><span class="pre">max_tiles</span></code> argument:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">df</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">max_tiles</span><span class="o">=</span><span class="mi">100</span>
<span class="p">)</span>
</pre></div>
</div>
<p>This function will return an instance of <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures" title="slideflow.DatasetFeatures"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures</span></code></a>, which contains tile-level predictions (in <code class="docutils literal notranslate"><span class="pre">DatasetFeatures.predictions</span></code>), tile X,Y locations from their respective slides (in <code class="docutils literal notranslate"><span class="pre">DatasetFeatures.locations</span></code>), layer activations (in <code class="docutils literal notranslate"><span class="pre">DatasetFeatures.activations</span></code>), and uncertainty (if applicable, in <code class="docutils literal notranslate"><span class="pre">DatasetFeatures.uncertainty</span></code>).</p>
</section>
<section id="create-the-mosaic-map">
<h2>Create the mosaic map<a class="headerlink" href="#create-the-mosaic-map" title="Permalink to this heading"></a></h2>
<p>From this collection of layer activations, we can generate a mosaic map from this <code class="docutils literal notranslate"><span class="pre">DatasetFeatures</span></code> object. Use <a class="reference internal" href="../project/#slideflow.Project.generate_mosaic" title="slideflow.Project.generate_mosaic"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.generate_mosaic()</span></code></a> to create the mosaic. We will use the <code class="docutils literal notranslate"><span class="pre">umap_cache</span></code> argument to cache the UMAP created during mosaic map generation, so it can be reused if necessary.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Generate a mosaic map</span>
<span class="n">mosaic</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_mosaic</span><span class="p">(</span>
<span class="n">df</span><span class="p">,</span>
<span class="n">filters</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;slide&#39;</span><span class="p">:</span> <span class="n">val_slides</span><span class="p">},</span>
<span class="n">umap_cache</span><span class="o">=</span><span class="s1">&#39;umap.pkl&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p>We can then render and save the mosaic map to disc using the <code class="docutils literal notranslate"><span class="pre">.save()</span></code> function:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Render and save map to disc</span>
<span class="n">mosaic</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;mosaic.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<img alt="https://i.imgur.com/kt8O85l.png" src="https://i.imgur.com/kt8O85l.png" />
</section>
<section id="save-corresponding-umaps">
<h2>Save corresponding UMAPs<a class="headerlink" href="#save-corresponding-umaps" title="Permalink to this heading"></a></h2>
<p>Now that we have the mosaic generated, we need to create corresponding labeled UMAP plots to aid in interpretability. UMAP plots are stored in <a class="reference internal" href="../slidemap/#slideflow.SlideMap" title="slideflow.SlideMap"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.SlideMap</span></code></a> objects. A mosaic’s underlying <code class="docutils literal notranslate"><span class="pre">SlideMap</span></code> can be accessed via <code class="docutils literal notranslate"><span class="pre">mosaic.slide_map</span></code>.</p>
<p>The <a class="reference internal" href="../slidemap/#slideflow.SlideMap" title="slideflow.SlideMap"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.SlideMap</span></code></a> class provides several functions useful for labeling. To start, we will label the umap according to the raw predictions for each tile image. As this is a binary categorical outcome, there will be two post-softmax predictions. We will label the UMAP according to the second logit (id=1), and then save the image to disc.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Label by raw predictions</span>
<span class="n">umap</span> <span class="o">=</span> <span class="n">mosaic</span><span class="o">.</span><span class="n">slide_map</span>
<span class="n">umap</span><span class="o">.</span><span class="n">label_by_preds</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">umap</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;umap_preds.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<img alt="https://i.imgur.com/FT7nH90.png" src="https://i.imgur.com/FT7nH90.png" />
<p>Next, we will discretize the predictions, showing the final prediction as a categorical label. The <code class="docutils literal notranslate"><span class="pre">SlideMap</span></code> object contains a dictionary of metadata for each image tile, and the final categorical prediction is assigned to the <code class="docutils literal notranslate"><span class="pre">prediction</span></code> key. We will use the <code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.SlideMap.label_by_meta()</span></code> function to label the umap with these categorical predictions.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Label by raw preds</span>
<span class="n">umap</span><span class="o">.</span><span class="n">label_by_meta</span><span class="p">(</span><span class="s1">&#39;prediction&#39;</span><span class="p">)</span>
<span class="n">umap</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;umap_predictions.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<img alt="https://i.imgur.com/oQwRPY2.png" src="https://i.imgur.com/oQwRPY2.png" />
<p>For reference, let’s see the ground truth categorical labels. For this, we will need a dictionary mapping slide names to labels, which we will then pass to <a class="reference internal" href="../slidemap/#slideflow.SlideMap.label_by_slide" title="slideflow.SlideMap.label_by_slide"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.SlideMap.label_by_slide()</span></code></a>. We can retrieve our slide labels from the project annotations file, using <a class="reference internal" href="../dataset/#slideflow.Dataset.labels" title="slideflow.Dataset.labels"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.labels()</span></code></a>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Get slide labels</span>
<span class="n">labels</span><span class="p">,</span> <span class="n">unique</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">()</span><span class="o">.</span><span class="n">labels</span><span class="p">(</span><span class="s1">&#39;cohort&#39;</span><span class="p">)</span>
<span class="c1"># Label with slide labels</span>
<span class="n">umap</span><span class="o">.</span><span class="n">label_by_slide</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span>
<span class="n">umap</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;umap_labels.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<img alt="https://i.imgur.com/BDNR68h.png" src="https://i.imgur.com/BDNR68h.png" />
<p>Finally, if we are a using a model that was trained with uncertainty quantification (UQ) enabled, (passing <code class="docutils literal notranslate"><span class="pre">uq=True</span></code> to <code class="docutils literal notranslate"><span class="pre">ModelParams</span></code>), we can label the UMAP with tile-level uncertainty:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Label by uncertainty</span>
<span class="n">umap</span><span class="o">.</span><span class="n">label_by_uncertainty</span><span class="p">()</span>
<span class="n">umap</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;umap_uncertainty.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<img alt="https://i.imgur.com/fnv8eQj.png" src="https://i.imgur.com/fnv8eQj.png" />
<p>In all cases, the UMAP plots can be customized by passing keyword arguments accepted by Seaborn’s <a class="reference external" href="https://seaborn.pydata.org/generated/seaborn.scatterplot.html">scatterplot</a> function, as well as a number of other arguments described in <a class="reference internal" href="../slidemap/#slideflow.SlideMap.save" title="slideflow.SlideMap.save"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.SlideMap.save()</span></code></a>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">umap</span><span class="o">.</span><span class="n">save</span><span class="p">(</span>
<span class="s1">&#39;umap_uncertainty.png&#39;</span><span class="p">,</span> <span class="c1"># Save path</span>
<span class="n">title</span><span class="o">=</span><span class="s1">&#39;Uncertainty&#39;</span><span class="p">,</span> <span class="c1"># Title for plot</span>
<span class="n">dpi</span><span class="o">=</span><span class="mi">150</span><span class="p">,</span> <span class="c1"># DPI for saved figure</span>
<span class="n">subsample</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="c1"># Subsample the data</span>
<span class="n">s</span><span class="o">=</span><span class="mi">3</span> <span class="c1"># Marker size</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../tutorial6/" class="btn btn-neutral float-right" title="Tutorial 6: Custom slide filtering" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../tutorial4/" class="btn btn-neutral" title="Tutorial 4: Model evaluation &amp; heatmaps" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Tutorial 5: Creating a mosaic map</a><ul>
<li><a class="reference internal" href="#train-a-model">Train a model</a></li>
<li><a class="reference internal" href="#locate-a-saved-model">Locate a saved model</a></li>
<li><a class="reference internal" href="#generate-layer-activations">Generate layer activations</a></li>
<li><a class="reference internal" href="#create-the-mosaic-map">Create the mosaic map</a></li>
<li><a class="reference internal" href="#save-corresponding-umaps">Save corresponding UMAPs</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>