<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Tutorial 2: Model training (advanced) — slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Tutorial 3: Using a custom architecture" href="../tutorial3/" />
<link rel="prev" title="Tutorial 1: Model training (simple)" href="../tutorial1/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation & heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> >
</li>
<li>Tutorial 2: Model training (advanced)</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/tutorial2.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="tutorial-2-model-training-advanced">
<span id="tutorial2"></span><h1>Tutorial 2: Model training (advanced)<a class="headerlink" href="#tutorial-2-model-training-advanced" title="Permalink to this heading">¶</a></h1>
<p>In the first tutorial, we used <a class="reference internal" href="../project/#slideflow.Project.train" title="slideflow.Project.train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.train()</span></code></a> to execute training. This project function is useful in that it:</p>
<ol class="arabic simple">
<li><p>Configures outcome labels in a manner supporting multiple outcomes</p></li>
<li><p>Configures mini-batch balancing</p></li>
<li><p>Supports full cross-validation, as opposed to training a single model at a time</p></li>
<li><p>Supports hyperparameter sweeps</p></li>
<li><p>Prepares any additional slide-level model input from clinical annotations</p></li>
<li><p>Logs model parameters to the model directory</p></li>
</ol>
<div class="line-block">
<div class="line"><br /></div>
</div>
<p>In this tutorial, we will walk through training a model using the <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Datset</span></code> and <a class="reference internal" href="../model/#slideflow.model.Trainer" title="slideflow.model.Trainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.model.Trainer</span></code></a> classes directly in an interactive python session, rather than using the built-in <a class="reference internal" href="../project/#slideflow.Project.train" title="slideflow.Project.train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.train()</span></code></a> function. This tutorial will demonstrate how model training happens under the hood, in case you would like to customize any part of the model training pipeline.</p>
<section id="project-setup">
<h2>Project Setup<a class="headerlink" href="#project-setup" title="Permalink to this heading">¶</a></h2>
<p>Using the same project configuration as the first tutorial, we will set up a new project:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="gp">>>> </span><span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Project</span><span class="p">(</span><span class="s1">'/home/er_project'</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">"Breast_ER"</span><span class="p">,</span> <span class="n">annotations</span><span class="o">=...</span><span class="p">)</span>
</pre></div>
</div>
<p>If you initialize a project with keywords, you will need to manually create a new dataset source with the <code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.add_dataset()</span></code> method:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">P</span><span class="o">.</span><span class="n">add_source</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">name</span><span class="o">=</span><span class="s2">"NAME"</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">slides</span><span class="o">=</span><span class="s2">"/slides/directory"</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">roi</span><span class="o">=</span><span class="s2">"/roi/directory"</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">tiles</span><span class="o">=</span><span class="s2">"/tiles/directory"</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">tfrecords</span><span class="o">=</span><span class="s2">"/tfrecords/directory"</span><span class="p">)</span>
<span class="gp">... </span><span class="p">)</span>
</pre></div>
</div>
<p>As before, set up your annotations file, including columns “patient”, “er_status_by_ihc”, “dataset”, and “slide”.</p>
</section>
<section id="creating-a-dataset">
<h2>Creating a Dataset<a class="headerlink" href="#creating-a-dataset" title="Permalink to this heading">¶</a></h2>
<p>Next, create a <a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Dataset</span></code></a> instance to indicate which slides we will be working with (again, we are working with 256 px tiles at 128 um). We only want to use our training set for now, and only include slides with an ER status annotation. For this, we will use the filters arguments.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">tile_px</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">filters</span><span class="o">=</span><span class="p">{</span>
<span class="gp">... </span> <span class="s1">'dataset'</span><span class="p">:</span> <span class="p">[</span><span class="s1">'train'</span><span class="p">],</span>
<span class="gp">... </span> <span class="s1">'er_status_by_ihc'</span><span class="p">:</span> <span class="p">[</span><span class="s1">'Positive'</span><span class="p">,</span> <span class="s1">'Negative'</span><span class="p">]</span>
<span class="gp">... </span><span class="p">})</span>
</pre></div>
</div>
<p>To extract tiles from the slides in this dataset, use the <a class="reference internal" href="../dataset/#slideflow.Dataset.extract_tiles" title="slideflow.Dataset.extract_tiles"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.extract_tiles()</span></code></a> method:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">dataset</span><span class="o">.</span><span class="n">extract_tiles</span><span class="p">()</span>
</pre></div>
</div>
<p>We can see how many tiles there are in our dataset by inspecting the <code class="docutils literal notranslate"><span class="pre">num_tiles</span></code> attribute:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">dataset</span><span class="o">.</span><span class="n">num_tiles</span>
<span class="go">4503965</span>
</pre></div>
</div>
<p>We can use the dataset to get our ER status labels. The <a class="reference internal" href="../dataset/#slideflow.Dataset.labels" title="slideflow.Dataset.labels"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.labels()</span></code></a> method returns the dictionary mapping slides names to outcomes as the first parameter, and a list of unique outcomes as the second parameter (which is not required at this time).</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">labels</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">labels</span><span class="p">(</span><span class="s1">'er_status_by_ihc'</span><span class="p">)</span>
<span class="go">2021-10-06 13:27:00 [INFO] - er_status_by_ihc 'Negative' assigned to value '0' [234 slides]</span>
<span class="go">2021-10-06 13:27:00 [INFO] - er_status_by_ihc 'Positive' assigned to value '1' [842 slides]</span>
</pre></div>
</div>
<p>We can see the slideflow logs showing us that 234 slides with the outcome label “Negative” were assigned to the numerical outcome “0”, and 842 “Positive” slides were assigned “1”.</p>
<p>Next, we’ll need to split this dataset into a training and validation set. We’ll start by training on the first of 3 k-folds for cross-validated training. To split a dataset, use the <a class="reference internal" href="../dataset/#slideflow.Dataset.split" title="slideflow.Dataset.split"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.split()</span></code></a> method. We’ll need to provide our labels to ensure that the outcome categories are balanced in the training and validation sets.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">train_dts</span><span class="p">,</span> <span class="n">val_dts</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">model_type</span><span class="o">=</span><span class="s1">'classification'</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">labels</span><span class="o">=</span><span class="n">labels</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">val_strategy</span><span class="o">=</span><span class="s1">'k-fold'</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">val_k_fold</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">k_fold_iter</span><span class="o">=</span><span class="mi">1</span>
<span class="gp">... </span><span class="p">)</span>
<span class="go">2021-10-06 13:27:39 [INFO] - No validation log provided; unable to save or load validation plans.</span>
<span class="go">2021-10-06 13:27:39 [INFO] - Category 0 1</span>
<span class="go">2021-10-06 13:27:39 [INFO] - K-fold-0 69 250</span>
<span class="go">2021-10-06 13:27:39 [INFO] - K-fold-1 69 250</span>
<span class="go">2021-10-06 13:27:39 [INFO] - K-fold-2 68 249</span>
<span class="go">2021-10-06 13:27:39 [INFO] - Using 636 TFRecords for training, 319 for validation</span>
</pre></div>
</div>
<p>The first informational log tells us that no validation log was provided. We could have optionally provided a JSON file path to the argument <code class="docutils literal notranslate"><span class="pre">splits</span></code>; this method can record splits to the provided file for automatic re-use later (helpful for hyperparameter sweeps). However, for the purposes of this tutorial, we have opted not to save our validation plan.</p>
<p>The rest of the log output shows us the distribution of our outcome categories among the k-folds, as well as the total number of slides for training and validation.</p>
<p>At this point, we can also add categorical balancing to our dataset (see <a class="reference internal" href="../dataloaders/#balancing"><span class="std std-ref">Oversampling with balancing</span></a>). Since we have nearly 4 times as many ER-positive samples as ER-negative, it may be helpful to balance each batch to have an equal proportion of positives and negatives. We can accomplish this with the <a class="reference internal" href="../dataset/#slideflow.Dataset.balance" title="slideflow.Dataset.balance"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.balance()</span></code></a> method:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">train_dts</span> <span class="o">=</span> <span class="n">train_dts</span><span class="o">.</span><span class="n">balance</span><span class="p">(</span><span class="s1">'er_status_by_ihc'</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="training">
<h2>Training<a class="headerlink" href="#training" title="Permalink to this heading">¶</a></h2>
<p>Now that our dataset is prepared, we can begin setting up our model and trainer. Our model training parameters are configured with <a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.ModelParams"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.ModelParams</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">hp</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">ModelParams</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">tile_px</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">model</span><span class="o">=</span><span class="s1">'xception'</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">epochs</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span>
<span class="gp">... </span><span class="p">)</span>
</pre></div>
</div>
<p>In addition to the above model parameters, our trainer will need the outcome labels, patient list (dict mapping slide names to patient IDs, as some patients can have more than one slide), and the directory in which to save our models:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">trainer</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">build_trainer</span><span class="p">(</span>
<span class="gp">... </span> <span class="n">hp</span><span class="o">=</span><span class="n">hp</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">outdir</span><span class="o">=</span><span class="s1">'/some/directory'</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">labels</span><span class="o">=</span><span class="n">labels</span><span class="p">,</span>
<span class="gp">... </span><span class="p">)</span>
</pre></div>
</div>
<p>Now we can start training. Pass the training and validation datasets to the <a class="reference internal" href="../model/#slideflow.model.Trainer.train" title="slideflow.model.Trainer.train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.model.Trainer.train()</span></code></a> method of our trainer, assigning the output to a new variable <code class="docutils literal notranslate"><span class="pre">results</span></code></p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">results</span> <span class="o">=</span> <span class="n">trainer</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">train_dts</span><span class="p">,</span> <span class="n">val_dts</span><span class="p">)</span>
</pre></div>
</div>
<p>You’ll see logs recording model structure, training progress across epochs, and metrics. The training and validation performance results are returned in dictionary format. <code class="docutils literal notranslate"><span class="pre">results</span></code> should have contents similar to the following (values will be different):</p>
<div class="highlight-json notranslate"><div class="highlight"><pre><span></span><span class="p">{</span>
<span class="w"> </span><span class="nt">"epochs"</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">"epoch3"</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">"train_metrics"</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">"loss"</span><span class="p">:</span><span class="w"> </span><span class="mf">0.497</span>
<span class="w"> </span><span class="nt">"accuracy"</span><span class="p">:</span><span class="w"> </span><span class="mf">0.806</span>
<span class="w"> </span><span class="nt">"val_loss"</span><span class="p">:</span><span class="w"> </span><span class="mf">0.719</span>
<span class="w"> </span><span class="nt">"val_accuracy"</span><span class="p">:</span><span class="w"> </span><span class="mf">0.778</span>
<span class="w"> </span><span class="p">},</span>
<span class="w"> </span><span class="nt">"val_metrics"</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">"loss"</span><span class="p">:</span><span class="w"> </span><span class="mf">0.727</span>
<span class="w"> </span><span class="nt">"accuracy"</span><span class="p">:</span><span class="w"> </span><span class="mf">0.770</span>
<span class="w"> </span><span class="p">},</span>
<span class="w"> </span><span class="nt">"tile"</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">"Outcome 0"</span><span class="p">:</span><span class="w"> </span><span class="p">[</span>
<span class="w"> </span><span class="mf">0.580</span>
<span class="w"> </span><span class="mf">0.580</span>
<span class="w"> </span><span class="p">]</span>
<span class="w"> </span><span class="p">},</span>
<span class="w"> </span><span class="nt">"slide"</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">"Outcome 0"</span><span class="p">:</span><span class="w"> </span><span class="p">[</span>
<span class="w"> </span><span class="mf">0.658</span>
<span class="w"> </span><span class="mf">0.658</span>
<span class="w"> </span><span class="p">]</span>
<span class="w"> </span><span class="p">},</span>
<span class="w"> </span><span class="nt">"patient"</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">"Outcome 0"</span><span class="p">:</span><span class="w"> </span><span class="p">[</span>
<span class="w"> </span><span class="mf">0.657</span>
<span class="w"> </span><span class="mf">0.657</span>
<span class="w"> </span><span class="p">]</span>
<span class="w"> </span><span class="p">}</span>
<span class="w"> </span><span class="p">}</span>
<span class="w"> </span><span class="p">}</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Training results are separated with nested dictionaries according to epoch. The raw training metrics and validation metrics are stored with the keys <code class="docutils literal notranslate"><span class="pre">"train_metrics"</span></code> and <code class="docutils literal notranslate"><span class="pre">"val_metrics"</span></code>, and tile-, slide-, and patient-level metrics (AUROC for classification, R-squared for regression outcomes, and concordance index for survival models) is reported under the <code class="docutils literal notranslate"><span class="pre">"tile"</span></code>, <code class="docutils literal notranslate"><span class="pre">"slide"</span></code>, and <code class="docutils literal notranslate"><span class="pre">"patient"</span></code> keys for each outcome, respectively.</p>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../tutorial3/" class="btn btn-neutral float-right" title="Tutorial 3: Using a custom architecture" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../tutorial1/" class="btn btn-neutral" title="Tutorial 1: Model training (simple)" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Tutorial 2: Model training (advanced)</a><ul>
<li><a class="reference internal" href="#project-setup">Project Setup</a></li>
<li><a class="reference internal" href="#creating-a-dataset">Creating a Dataset</a></li>
<li><a class="reference internal" href="#training">Training</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>