[78ef36]: / docs / tfrecords / index.html

Download this file

679 lines (525 with data), 50.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>TFRecords: Reading and Writing &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Dataloaders: Sampling and Augmentation" href="../dataloaders/" />
<link rel="prev" title="Troubleshooting" href="../troubleshooting/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="#">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>TFRecords: Reading and Writing</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/tfrecords.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="tfrecords-reading-and-writing">
<span id="tfrecords"></span><h1>TFRecords: Reading and Writing<a class="headerlink" href="#tfrecords-reading-and-writing" title="Permalink to this heading"></a></h1>
<p>TFRecords are binary files designed for storing large amounts of data. In Slideflow, TFRecords are used to store compressed image tiles extracted from whole-slide images. TFRecords are used instead of loose image files (such as <code class="docutils literal notranslate"><span class="pre">*.jpg</span></code> or <code class="docutils literal notranslate"><span class="pre">*.png</span></code>) because they are compact, more easily distributed, and significantly improve data reading efficiency during model training. TFRecords were originally designed for Tensorflow, but they can also be used with PyTorch.</p>
<p>The following sections describe the TFRecord data format and provide examples of how to create, read, and manipulate TFRecords using Slideflow.</p>
<section id="tfrecord-format">
<h2>TFRecord Format<a class="headerlink" href="#tfrecord-format" title="Permalink to this heading"></a></h2>
<p>TFRecords are binary files that contain a sequence of records, where each record represents an individual image tile. Each record contains a serialized <a class="reference external" href="https://protobuf.dev/overview/">protocol buffer</a> with a list of named features. Each feature can be a list of bytes, floats, or integers. TFRecords are expected to have the following features:</p>
<ul class="simple">
<li><p><strong>“image_raw”</strong>: Bytes containing the image data (either JPG or PNG).</p></li>
<li><p><strong>“slide”</strong>: Bytes containing the slide name (in UTF-8 format).</p></li>
<li><p><strong>“loc_x”</strong>: Integer containing the x-coordinate of the tile (optional).</p></li>
<li><p><strong>“loc_y”</strong>: Integer containing the y-coordinate of the tile (optional).</p></li>
</ul>
<p>Slideflow expects each TFRecord to contain images from only a single slide, with the TFRecord name matching the slide name. The <code class="docutils literal notranslate"><span class="pre">loc_x</span></code> and <code class="docutils literal notranslate"><span class="pre">loc_y</span></code> features are optional, but are required for some operations (such as generating TFRecord heatmaps).</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>When reading TFRecords with Tensorflow, records are internally decoded using <code class="docutils literal notranslate"><span class="pre">tf.train.Example</span></code>. When Tensorflow is not being used (such as when using the PyTorch backend), tfrecords are decoded using <code class="docutils literal notranslate"><span class="pre">sf.util.example_pb2.Example</span></code>, providing an alternative decoder that does not require Tensorflow. Tensorflow’s <code class="docutils literal notranslate"><span class="pre">tf.train.Example</span></code> and Slideflow’s <code class="docutils literal notranslate"><span class="pre">sf.util.example_pb2.Example</span></code> are identical, except that <code class="docutils literal notranslate"><span class="pre">sf.util.example_pb2.Example</span></code> does not require Tensorflow and supports <code class="docutils literal notranslate"><span class="pre">protobuf</span></code> version 4.</p>
</div>
</section>
<section id="tfrecord-indices">
<h2>TFRecord Indices<a class="headerlink" href="#tfrecord-indices" title="Permalink to this heading"></a></h2>
<p>Slideflow uses TFRecord index files to keep track of the internal structure of each TFRecord, improving efficiency of data reading. These index files are automatically built and stored in the same directory as the TFRecords upon first use. A TFRecord index is an <code class="docutils literal notranslate"><span class="pre">*.npz</span></code> file with the same name as the TFRecord, but with the <code class="docutils literal notranslate"><span class="pre">*.index.npz</span></code> extension. A TFRecord index contains the following fields:</p>
<ul class="simple">
<li><p><strong>“arr_0”</strong>: An array of shape <code class="docutils literal notranslate"><span class="pre">(n_tiles,</span> <span class="pre">2)</span></code> containing the starting bytes and length of each record.</p></li>
<li><p><strong>“locations”</strong>: An array of shape <code class="docutils literal notranslate"><span class="pre">(n_tiles,</span> <span class="pre">2)</span></code> containing the x- and y-coordinates of each tile.</p></li>
</ul>
<p>Index files for an entire dataset can be rebuilt using <a class="reference internal" href="../dataset/#slideflow.Dataset.rebuild_index" title="slideflow.Dataset.rebuild_index"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.rebuild_index()</span></code></a>. You can manually create an index file for a single TFRecord using <code class="xref py py-func docutils literal notranslate"><span class="pre">sf.util.tfrecord2idx.create_index()</span></code>.</p>
</section>
<section id="creating-tfrecords">
<h2>Creating TFRecords<a class="headerlink" href="#creating-tfrecords" title="Permalink to this heading"></a></h2>
<section id="from-a-dataset">
<h3>From a Dataset<a class="headerlink" href="#from-a-dataset" title="Permalink to this heading"></a></h3>
<p>The typical way to create TFRecords is to use the <a class="reference internal" href="../dataset/#slideflow.Dataset.extract_tiles" title="slideflow.Dataset.extract_tiles"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.extract_tiles()</span></code></a> function, as described in <a class="reference internal" href="../slide_processing/#filtering"><span class="std std-ref">Slide Processing</span></a>. TFRecords will be exported to the destination configured in the <a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Dataset</span></code></a> object (see: <a class="reference internal" href="../datasets_and_val/#datasets-and-validation"><span class="std std-ref">Datasets</span></a>).</p>
</section>
<section id="from-a-slide">
<h3>From a slide<a class="headerlink" href="#from-a-slide" title="Permalink to this heading"></a></h3>
<p>A TFRecord file for a single slide can be manually created using <a class="reference internal" href="../slide/#slideflow.WSI.extract_tiles" title="slideflow.WSI.extract_tiles"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.WSI.extract_tiles()</span></code></a> function. The first argument of this function is the TFRecord destination folder.</p>
</section>
<section id="from-a-directory-of-images">
<h3>From a directory of images<a class="headerlink" href="#from-a-directory-of-images" title="Permalink to this heading"></a></h3>
<p>A directory of loose image files can be assembled into a TFRecord using <a class="reference internal" href="../io/#slideflow.io.write_tfrecords_single" title="slideflow.io.write_tfrecords_single"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.io.write_tfrecords_single()</span></code></a>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">sf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">write_tfrecords_single</span><span class="p">(</span>
<span class="s1">&#39;/path/to/images&#39;</span><span class="p">,</span>
<span class="s1">&#39;/path/to/destination&#39;</span><span class="p">,</span>
<span class="n">filename</span><span class="o">=</span><span class="s1">&#39;filename&#39;</span><span class="p">,</span>
<span class="n">slide</span><span class="o">=</span><span class="s1">&#39;slide&#39;</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>A nested directory of loose image tiles, organized into subdirectory by slide name, can be simultaneously assembled into multiple TFRecords (one for each slide) using <a class="reference internal" href="../io/#slideflow.io.write_tfrecords_multi" title="slideflow.io.write_tfrecords_multi"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.io.write_tfrecords_multi()</span></code></a>. Slide names are determined from the subdirectory names:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">sf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">write_tfrecords_multi</span><span class="p">(</span>
<span class="s1">&#39;/path/to/nested_images&#39;</span><span class="p">,</span>
<span class="s1">&#39;/path/to/destination&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
</section>
<section id="inspecting-tfrecords">
<h2>Inspecting TFRecords<a class="headerlink" href="#inspecting-tfrecords" title="Permalink to this heading"></a></h2>
<section id="individual-tfrecords">
<h3>Individual TFRecords<a class="headerlink" href="#individual-tfrecords" title="Permalink to this heading"></a></h3>
<p>The quickest way to inspect a TFRecord is to use <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.TFRecord</span></code>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tfr</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">TFRecord</span><span class="p">(</span><span class="s1">&#39;/path/to/tfrecord&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>An index file will be automatically created if one is not found. To disable automatic index creation, set <code class="docutils literal notranslate"><span class="pre">create_index=False</span></code>.</p>
<p>The TFRecord object has several useful attributes:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">tfr</span><span class="o">.</span><span class="n">fields</span>
<span class="go">[&#39;image_raw&#39;, &#39;slide&#39;, &#39;loc_x&#39;, &#39;loc_y&#39;]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tfr</span><span class="o">.</span><span class="n">img_format</span>
<span class="go">&#39;jpeg&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tfr</span><span class="o">.</span><span class="n">length</span>
<span class="go">1000</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tfr</span><span class="o">.</span><span class="n">locations</span>
<span class="go">[(768, 256), (768, 512), ...]</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">fields</span></code> attribute is a list of the fields in the TFRecord.</p>
<p>The <code class="docutils literal notranslate"><span class="pre">img_format</span></code> attribute is the image format of the TFRecord (either <code class="docutils literal notranslate"><span class="pre">&quot;jpeg&quot;</span></code> or <code class="docutils literal notranslate"><span class="pre">&quot;png&quot;</span></code>).</p>
<p>The <code class="docutils literal notranslate"><span class="pre">length</span></code> attribute is the number of tiles in the TFRecord.</p>
<p>The <code class="docutils literal notranslate"><span class="pre">locations</span></code> attribute is a list of the x- and y- center coordinates of each tile, if available, otherwise None.</p>
</section>
<section id="inspecting-datasets">
<h3>Inspecting Datasets<a class="headerlink" href="#inspecting-datasets" title="Permalink to this heading"></a></h3>
<p>The <a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Dataset</span></code></a> object provides several methods for inspecting the TFRecords in a dataset generated through <a class="reference internal" href="../dataset/#slideflow.Dataset.extract_tiles" title="slideflow.Dataset.extract_tiles"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.extract_tiles()</span></code></a>.</p>
<p>The <a class="reference internal" href="../dataset/#slideflow.Dataset.summary" title="slideflow.Dataset.summary"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.summary()</span></code></a> method provides a summary of the dataset, including the location TFRecords are stored and the number of total number of tiles across all TFRecords in the dataset.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Prepare a dataset of image tiles.</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">project</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="c1"># Tile size, in pixels.</span>
<span class="n">tile_um</span><span class="o">=</span><span class="s1">&#39;10x&#39;</span> <span class="c1"># Tile size, in microns or magnification.</span>
<span class="p">)</span>
<span class="n">dataset</span><span class="o">.</span><span class="n">summary</span><span class="p">()</span>
</pre></div>
</div>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Overview:
╒===============================================╕
│ Configuration file: │ /mnt/data/datasets.json │
│ Tile size (px): │ 299 │
│ Tile size (um): │ 10x │
│ Slides: │ 941 │
│ Patients: │ 941 │
│ Slides with ROIs: │ 941 │
│ Patients with ROIs: │ 941 │
╘===============================================╛
Filters:
╒====================╕
│ Filters: │ {} │
├--------------------┤
│ Filter Blank: │ [] │
├--------------------┤
│ Min Tiles: │ 0 │
╘====================╛
Sources:
TCGA_LUNG
╒==============================================╕
│ slides │ /mnt/raid/SLIDES/TCGA_LUNG │
│ roi │ /mnt/raid/SLIDES/TCGA_LUNG │
│ tiles │ /mnt/rocket/tiles/TCGA_LUNG │
│ tfrecords │ /mnt/rocket/tfrecords/TCGA_LUNG/ │
│ label │ 299px_10x │
╘==============================================╛
Number of tiles in TFRecords: 284114
Annotation columns:
Index([&#39;patient&#39;, &#39;subtype&#39;, &#39;site&#39;, &#39;slide&#39;],
dtype=&#39;object&#39;)
</pre></div>
</div>
<p>The <a class="reference internal" href="../dataset/#slideflow.Dataset.tfrecords" title="slideflow.Dataset.tfrecords"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.tfrecords()</span></code></a> method returns a list of paths to tfrecords.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">tfrecords</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">tfrecords</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">tfrecords</span><span class="p">)</span>
<span class="go">941</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tfrecords</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">&#39;/path/to/tfrecords1&#39;</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">slideflow.Dataset.num_tiles</span></code> attribute returns the total number of tiles across all TFRecords in the dataset.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">dataset</span><span class="o">.</span><span class="n">num_tiles</span>
<span class="go">284114</span>
</pre></div>
</div>
<p>Finally, the <a class="reference internal" href="../dataset/#slideflow.Dataset.manifest" title="slideflow.Dataset.manifest"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.manifest()</span></code></a> method returns a dictionary mapping TFRecord paths to the number tiles in each TFRecord. Each value returned by the dictionary is a nested dictionary with two keys: <code class="docutils literal notranslate"><span class="pre">&quot;total&quot;</span></code>, which is the total number of tiles in the TFRecords, and <code class="docutils literal notranslate"><span class="pre">&quot;clipped&quot;</span></code>, which is the number of tiles that will be taken from the TFRecord as a result of <a class="reference internal" href="../dataloaders/#sampling"><span class="std std-ref">clipping/undersampling</span></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">dataset</span><span class="o">.</span><span class="n">manifest</span><span class="p">()</span>
<span class="go">{&#39;/path/to/tfrecords1&#39;: {&#39;total&#39;: 1000, &#39;clipped&#39;: 512},</span>
<span class="go"> &#39;/path/to/tfrecords2&#39;: {&#39;total&#39;: 2000, &#39;clipped&#39;: 512},</span>
<span class="go"> ...}</span>
</pre></div>
</div>
</section>
</section>
<section id="reading-tfrecords">
<h2>Reading TFRecords<a class="headerlink" href="#reading-tfrecords" title="Permalink to this heading"></a></h2>
<p>Slideflow provides several tools for reading and parsing TFRecords. These tools are intended for debugging and development, and are not recommended for model training. Higher-level dataloaders, which supervise sampling, shuffling, sharding, batching, labeling, and augmenting, are discussed in <a class="reference internal" href="../dataloaders/#dataloaders"><span class="std std-ref">Dataloaders: Sampling and Augmentation</span></a>.</p>
<section id="reading-a-single-image-tile">
<h3>Reading a single image tile<a class="headerlink" href="#reading-a-single-image-tile" title="Permalink to this heading"></a></h3>
<p>To get a single parsed record according to its index, use <code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.TFRecord.__getitem__()</span></code>, which returns a dictionary of the parsed record:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tfr</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">TFRecord</span><span class="p">(</span><span class="s1">&#39;/path/to/tfrecord&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tfr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">{&#39;image_raw&#39;: b&#39;...&#39;, &#39;slide&#39;: &#39;SLIDE_NAME&#39;, &#39;loc_x&#39;: 0, &#39;loc_y&#39;: 0}</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">'image_raw'</span></code> field contains raw image bytes, in either JPG or PNG format.</p>
<p>To get a single parsed record according to its location, use <code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.TFRecord.get_record_by_xy()</span></code>, which returns the slide name and image bytes:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">tfr</span><span class="o">.</span><span class="n">get_record_by_xy</span><span class="p">(</span><span class="mi">768</span><span class="p">,</span> <span class="mi">256</span><span class="p">)</span>
<span class="go">(&#39;SLIDE_NAME&#39;, b&#39;...&#39;)</span>
</pre></div>
</div>
<p>Image bytes can be decoded into Tensors (according to the active backend) using <code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.io.decode_image()</span></code>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">slide</span><span class="p">,</span> <span class="n">image</span> <span class="o">=</span> <span class="n">tfr</span><span class="o">.</span><span class="n">get_record_by_xy</span><span class="p">(</span><span class="mi">768</span><span class="p">,</span> <span class="mi">256</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">image</span><span class="p">))</span>
<span class="go">&lt;class &#39;bytes&#39;&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">decode_image</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>
<span class="go">&lt;torch.Tensor shape=(256, 256, 3) dtype=torch.uint8</span>
</pre></div>
</div>
</section>
<section id="reading-from-a-single-tfrecord">
<h3>Reading from a single TFRecord<a class="headerlink" href="#reading-from-a-single-tfrecord" title="Permalink to this heading"></a></h3>
<p>The function <code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.tfrecord_loader()</span></code> provides an interface for reading images from a single TFRecord in sequence. Start by loading the TFRecord index, creating one if it does not already exist:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tfr</span> <span class="o">=</span> <span class="s1">&#39;/path/to/tfrecords&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">tfrecord2idx</span><span class="o">.</span><span class="n">create_index</span><span class="p">(</span><span class="n">tfr</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">index</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">tfrecord2idx</span><span class="o">.</span><span class="n">load_index</span><span class="p">(</span><span class="n">tfr</span><span class="p">)</span>
</pre></div>
</div>
<p>Then, use <code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.tfrecord_loader()</span></code> to create a generator that yields parsed records from the TFRecord:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">loader</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">tfrecord</span><span class="o">.</span><span class="n">tfrecord_loader</span><span class="p">(</span><span class="n">tfr</span><span class="p">,</span> <span class="n">index</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">record</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="nb">iter</span><span class="p">(</span><span class="n">loader</span><span class="p">))</span>
<span class="go">{&#39;image_raw&#39;: &lt;np.ndarray&gt;, &#39;slide&#39;: &lt;np.ndarray&gt;, &#39;loc_x&#39;: [0], &#39;loc_y&#39;: [0]}</span>
</pre></div>
</div>
<p>Both <code class="docutils literal notranslate"><span class="pre">&quot;image_raw&quot;</span></code> and <code class="docutils literal notranslate"><span class="pre">&quot;slide&quot;</span></code> fields are returned as bytes in numpy arrays. The <code class="docutils literal notranslate"><span class="pre">&quot;loc_x&quot;</span></code> and <code class="docutils literal notranslate"><span class="pre">&quot;loc_y&quot;</span></code> fields are returned as integers. The image and slide name can be decoded using <code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.io.decode_image()</span></code> and <code class="docutils literal notranslate"><span class="pre">.decode('utf-8')</span></code>, respectively:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">image</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">decode_image</span><span class="p">(</span><span class="nb">bytes</span><span class="p">(</span><span class="n">record</span><span class="p">[</span><span class="s1">&#39;image_raw&#39;</span><span class="p">]))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">slide</span> <span class="o">=</span> <span class="nb">bytes</span><span class="p">(</span><span class="n">record</span><span class="p">[</span><span class="s1">&#39;slide&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">decode</span><span class="p">(</span><span class="s1">&#39;utf-8&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>This iterator can be used to read all images from a TFRecord in sequence:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">record</span> <span class="ow">in</span> <span class="n">loader</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">image</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">decode_image</span><span class="p">(</span><span class="nb">bytes</span><span class="p">(</span><span class="n">record</span><span class="p">[</span><span class="s1">&#39;image_raw&#39;</span><span class="p">]))</span>
<span class="gp">... </span> <span class="n">slide</span> <span class="o">=</span> <span class="nb">bytes</span><span class="p">(</span><span class="n">record</span><span class="p">[</span><span class="s1">&#39;slide&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">decode</span><span class="p">(</span><span class="s1">&#39;utf-8&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>The iterator can be split into separate shards (data partitions) with the <code class="docutils literal notranslate"><span class="pre">shard</span></code> argument, a tuple of <code class="docutils literal notranslate"><span class="pre">(shard_id,</span> <span class="pre">n_shards)</span></code>. This is useful for parallelizing data reading across multiple processes, threads, or compute nodes:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">loader</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">tfrecord</span><span class="o">.</span><span class="n">tfrecord_loader</span><span class="p">(</span><span class="n">tfr</span><span class="p">,</span> <span class="n">index</span><span class="p">,</span> <span class="n">shard</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
</pre></div>
</div>
<p>Data sharding ensures that each shard reads a unique subset of the data, and that each record is read exactly once.</p>
<p>An index file is recommended for improving efficiency of data reading, and required if using data sharding.</p>
</section>
<section id="interleaving-multiple-tfrecords">
<h3>Interleaving multiple TFRecords<a class="headerlink" href="#interleaving-multiple-tfrecords" title="Permalink to this heading"></a></h3>
<p>You can also interleave multiple TFRecords using <code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.multi_tfrecord_loader()</span></code>. This function takes a list of TFRecord paths and a list of corresponding TFRecord indices, and returns a generator that randomly samples from TFRecords and parses the records:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tfrs</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;/path/to/tfrecord1&#39;</span><span class="p">,</span> <span class="s1">&#39;/path/to/tfrecord2&#39;</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">indices</span> <span class="o">=</span> <span class="p">[</span><span class="n">sf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">tfrecord2idx</span><span class="o">.</span><span class="n">load_index</span><span class="p">(</span><span class="n">tfr</span><span class="p">)</span> <span class="k">for</span> <span class="n">tfr</span> <span class="ow">in</span> <span class="n">tfrs</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">loader</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">tfrecord</span><span class="o">.</span><span class="n">multi_tfrecord_loader</span><span class="p">(</span><span class="n">tfrs</span><span class="p">,</span> <span class="n">indices</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">record</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="nb">iter</span><span class="p">(</span><span class="n">loader</span><span class="p">))</span>
<span class="go">{&#39;image_raw&#39;: &lt;np.ndarray&gt;, &#39;slide&#39;: &lt;np.ndarray&gt;, &#39;loc_x&#39;: [0], &#39;loc_y&#39;: [0]}</span>
</pre></div>
</div>
<p>By default, records are sampled from TFRecords with equal probability (i.e. uniform sampling). You can also specify a list of weights to sample from TFRecords with different probabilities (i.e. weighted sampling) via the <code class="docutils literal notranslate"><span class="pre">weights</span></code> argument. The weights should be a list of floats, one for each TFRecord, that sum to 1.0:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">loader</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">tfrecord</span><span class="o">.</span><span class="n">multi_tfrecord_loader</span><span class="p">(</span><span class="n">tfrs</span><span class="p">,</span> <span class="n">indices</span><span class="p">,</span> <span class="n">weights</span><span class="o">=</span><span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">])</span>
</pre></div>
</div>
<p>Records will be sampled infinitely by default. To disable infinite sampling, set <code class="docutils literal notranslate"><span class="pre">infinite=False</span></code>.</p>
<p>TFRecord sharding is also supported for <code class="docutils literal notranslate"><span class="pre">multi_tfrecord_loader()</span></code> via the <code class="docutils literal notranslate"><span class="pre">shard</span></code> argument.</p>
</section>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../dataloaders/" class="btn btn-neutral float-right" title="Dataloaders: Sampling and Augmentation" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../troubleshooting/" class="btn btn-neutral" title="Troubleshooting" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">TFRecords: Reading and Writing</a><ul>
<li><a class="reference internal" href="#tfrecord-format">TFRecord Format</a></li>
<li><a class="reference internal" href="#tfrecord-indices">TFRecord Indices</a></li>
<li><a class="reference internal" href="#creating-tfrecords">Creating TFRecords</a><ul>
<li><a class="reference internal" href="#from-a-dataset">From a Dataset</a></li>
<li><a class="reference internal" href="#from-a-slide">From a slide</a></li>
<li><a class="reference internal" href="#from-a-directory-of-images">From a directory of images</a></li>
</ul>
</li>
<li><a class="reference internal" href="#inspecting-tfrecords">Inspecting TFRecords</a><ul>
<li><a class="reference internal" href="#individual-tfrecords">Individual TFRecords</a></li>
<li><a class="reference internal" href="#inspecting-datasets">Inspecting Datasets</a></li>
</ul>
</li>
<li><a class="reference internal" href="#reading-tfrecords">Reading TFRecords</a><ul>
<li><a class="reference internal" href="#reading-a-single-image-tile">Reading a single image tile</a></li>
<li><a class="reference internal" href="#reading-from-a-single-tfrecord">Reading from a single TFRecord</a></li>
<li><a class="reference internal" href="#interleaving-multiple-tfrecords">Interleaving multiple TFRecords</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>