<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Generative Networks (GANs) — slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Saliency Maps" href="../saliency/" />
<link rel="prev" title="Self-Supervised Learning (SSL)" href="../ssl/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation & heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> >
</li>
<li>Generative Networks (GANs)</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/stylegan.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="generative-networks-gans">
<span id="stylegan"></span><h1>Generative Networks (GANs)<a class="headerlink" href="#generative-networks-gans" title="Permalink to this heading">¶</a></h1>
<video autoplay="True" width="100%" controls="True" preload="auto" loop="True"><source src="https://media.githubusercontent.com/media/slideflow/slideflow/master/docs/stylegan.webm" type="video/webm"></video><div class="line-block">
<div class="line"><br /></div>
</div>
<p>Slideflow includes tools to easily interface with the PyTorch implementations of <a class="reference external" href="https://github.com/jamesdolezal/stylegan2-slideflow">StyleGAN2</a> and <a class="reference external" href="https://github.com/jamesdolezal/stylegan3-slideflow">StyleGAN3</a>, allowing you to train these Generative Adversarial Networks (GANs). Slideflow additionally includes tools to assist with image generation, interpolation between class labels, and interactively visualize GAN-generated images and their predictions. See our manuscript on the use of GANs to <a class="reference external" href="https://arxiv.org/abs/2211.06522">generate synthetic histology</a> for an example of how these networks might be used.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>StyleGAN requires PyTorch <0.13 and Slideflow-NonCommercial, which can be installed with:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>slideflow-noncommercial
</pre></div>
</div>
</div>
<section id="training-stylegan">
<h2>Training StyleGAN<a class="headerlink" href="#training-stylegan" title="Permalink to this heading">¶</a></h2>
<p>The easiest way to train StyleGAN2/StyleGAN3 is with <a class="reference internal" href="../project/#slideflow.Project.gan_train" title="slideflow.Project.gan_train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_train()</span></code></a>. Both standard and class-conditional GANs are
supported. To train a GAN, pass a <a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Dataset</span></code></a>, experiment label,
and StyleGAN keyword arguments to this function:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Project</span><span class="p">(</span><span class="s1">'/project/path'</span><span class="p">)</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">400</span><span class="p">)</span>
<span class="n">P</span><span class="o">.</span><span class="n">gan_train</span><span class="p">(</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">dataset</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="s1">'stylegan3'</span><span class="p">,</span>
<span class="n">cfg</span><span class="o">=</span><span class="s1">'stylegan3-r'</span><span class="p">,</span>
<span class="n">exp_label</span><span class="o">=</span><span class="s2">"ExperimentLabel"</span><span class="p">,</span>
<span class="n">gpus</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
<span class="n">batch</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="o">...</span>
<span class="p">)</span>
</pre></div>
</div>
<p>The trained networks will be saved in the <code class="docutils literal notranslate"><span class="pre">gan/</span></code> subfolder in the project directory.</p>
<p>StyleGAN2/3 can only be trained on images with sizes that are powers of 2. You can crop and/or resize images from a Dataset to match this requirement by using the <code class="docutils literal notranslate"><span class="pre">crop</span></code> and/or <code class="docutils literal notranslate"><span class="pre">resize</span></code> arguments:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
<span class="c1"># Train a GAN on images resized to 256x256</span>
<span class="n">P</span><span class="o">.</span><span class="n">gan_train</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">resize</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>See the <a class="reference internal" href="../project/#slideflow.Project.gan_train" title="slideflow.Project.gan_train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_train()</span></code></a> documentation for additional
keyword arguments to customize training.</p>
<section id="class-conditioning">
<h3>Class conditioning<a class="headerlink" href="#class-conditioning" title="Permalink to this heading">¶</a></h3>
<p>GANs can also be trained with class conditioning. To train a class-conditional GAN, simply provide a list of categorical
outcome labels to the <code class="docutils literal notranslate"><span class="pre">outcomes</span></code> argument of <a class="reference internal" href="../project/#slideflow.Project.gan_train" title="slideflow.Project.gan_train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_train()</span></code></a>. For example, to train a GAN with class conditioning on ER status:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_train</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">outcomes</span><span class="o">=</span><span class="s1">'er_status'</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
<section id="tile-level-labels">
<h3>Tile-level labels<a class="headerlink" href="#tile-level-labels" title="Permalink to this heading">¶</a></h3>
<p>In addition to class conditioning with slide-level labels, StyleGAN2/StyleGAN3 can be trained with tile-level class conditioning. Tile-level labels can be generated through ROI annotations, as described in <a class="reference internal" href="../tile_labels/#tile-labels"><span class="std std-ref">Strong Supervision with Tile Labels</span></a>.</p>
<p>Prepare a pandas dataframe, indexed with the format <code class="docutils literal notranslate"><span class="pre">{slide}-{x}-{y}</span></code>, where <code class="docutils literal notranslate"><span class="pre">slide</span></code> is the name of the slide (without extension), <code class="docutils literal notranslate"><span class="pre">x</span></code> is the corresponding tile x-coordinate, and <code class="docutils literal notranslate"><span class="pre">y</span></code> is the tile y-coordinate. The dataframe should have a single column, <code class="docutils literal notranslate"><span class="pre">label</span></code>, containing onehot-encoded category labels. For example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span>
<span class="n">index</span><span class="o">=</span><span class="p">[</span>
<span class="s1">'slide1-251-425'</span><span class="p">,</span>
<span class="s1">'slide1-560-241'</span><span class="p">,</span>
<span class="s1">'slide1-321-502'</span><span class="p">,</span>
<span class="o">...</span>
<span class="p">],</span>
<span class="n">data</span><span class="o">=</span><span class="p">{</span>
<span class="s1">'label'</span><span class="p">:</span> <span class="p">[</span>
<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="o">...</span>
<span class="p">]</span>
<span class="p">}</span>
<span class="p">)</span>
</pre></div>
</div>
<p>This dataframe can be generated, as described in <a class="reference internal" href="../tile_labels/#tile-labels"><span class="std std-ref">Strong Supervision with Tile Labels</span></a>, through the <a class="reference internal" href="../dataset/#slideflow.Dataset.get_tile_dataframe" title="slideflow.Dataset.get_tile_dataframe"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.get_tile_dataframe()</span></code></a> function. For GAN conditioning, the <code class="docutils literal notranslate"><span class="pre">label</span></code> column should be onehot-encoded.</p>
<p>Once the dataframe is complete, save it in parquet format:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">df</span><span class="o">.</span><span class="n">to_parquet</span><span class="p">(</span><span class="s1">'tile_labels.parquet'</span><span class="p">)</span>
</pre></div>
</div>
<p>And supply this file to the <code class="docutils literal notranslate"><span class="pre">tile_labels</span></code> argument of <a class="reference internal" href="../project/#slideflow.Project.gan_train" title="slideflow.Project.gan_train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_train()</span></code></a>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_train</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">tile_labels</span><span class="o">=</span><span class="s1">'tile_labels.parquet'</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
</section>
<section id="generating-images">
<h2>Generating images<a class="headerlink" href="#generating-images" title="Permalink to this heading">¶</a></h2>
<p>Images can be generated from a trained GAN and exported either as loose images
in PNG or JPG format, or alternatively stored in TFRecords. Images are generated from a list
of seeds (list of int). Use the <a class="reference internal" href="../project/#slideflow.Project.gan_generate" title="slideflow.Project.gan_generate"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_generate()</span></code></a> function
to generate images, with <code class="docutils literal notranslate"><span class="pre">out</span></code> set to a directory path if exporting loose images,
or <code class="docutils literal notranslate"><span class="pre">out</span></code> set to a filename ending in <code class="docutils literal notranslate"><span class="pre">.tfrecords</span></code> if saving images in
TFRecord format:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">network_pkl</span> <span class="o">=</span> <span class="s1">'/path/to/trained/gan.pkl'</span>
<span class="n">P</span><span class="o">.</span><span class="n">gan_generate</span><span class="p">(</span>
<span class="n">network_pkl</span><span class="p">,</span>
<span class="n">out</span><span class="o">=</span><span class="s1">'target.tfrecords'</span><span class="p">,</span>
<span class="n">seeds</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">100</span><span class="p">),</span>
<span class="o">...</span>
<span class="p">)</span>
</pre></div>
</div>
<p>The image format is set with the <code class="docutils literal notranslate"><span class="pre">format</span></code> argument:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_generate</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="nb">format</span><span class="o">=</span><span class="s1">'jpg'</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Class index (for class-conditional GANs) is set with <code class="docutils literal notranslate"><span class="pre">class_idx</span></code>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_generate</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">class_idx</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Finally, images can be resized after generation to match a target tile size:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_generate</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">gan_px</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span>
<span class="n">gan_um</span><span class="o">=</span><span class="mi">400</span><span class="p">,</span>
<span class="n">target_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span>
<span class="n">target_um</span><span class="o">=</span><span class="mi">302</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<section id="interactive-visualization">
<h3>Interactive visualization<a class="headerlink" href="#interactive-visualization" title="Permalink to this heading">¶</a></h3>
<p>Slideflow Studio can be used to interactively visualize GAN-generated images (see <a class="reference internal" href="../studio/#studio"><span class="std std-ref">Slideflow Studio: Live Visualization</span></a>). Images can be directly exported from this interface. This tool also enables you to visualize real-time predictions for GAN generated images when as inputs to a trained classifier.</p>
<p>For more examples of using Slideflow to work with GAN-generated images, see <a class="reference external" href="https://github.com/jamesdolezal/synthetic-histology">our GitHub repository</a> for code accompanying the previously referenced manuscript.</p>
</section>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../saliency/" class="btn btn-neutral float-right" title="Saliency Maps" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../ssl/" class="btn btn-neutral" title="Self-Supervised Learning (SSL)" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Generative Networks (GANs)</a><ul>
<li><a class="reference internal" href="#training-stylegan">Training StyleGAN</a><ul>
<li><a class="reference internal" href="#class-conditioning">Class conditioning</a></li>
<li><a class="reference internal" href="#tile-level-labels">Tile-level labels</a></li>
</ul>
</li>
<li><a class="reference internal" href="#generating-images">Generating images</a><ul>
<li><a class="reference internal" href="#interactive-visualization">Interactive visualization</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>