[78ef36]: / docs / stylegan / index.html

Download this file

577 lines (423 with data), 33.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Generative Networks (GANs) &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Saliency Maps" href="../saliency/" />
<link rel="prev" title="Self-Supervised Learning (SSL)" href="../ssl/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>Generative Networks (GANs)</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/stylegan.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="generative-networks-gans">
<span id="stylegan"></span><h1>Generative Networks (GANs)<a class="headerlink" href="#generative-networks-gans" title="Permalink to this heading"></a></h1>
<video autoplay="True" width="100%" controls="True" preload="auto" loop="True"><source src="https://media.githubusercontent.com/media/slideflow/slideflow/master/docs/stylegan.webm" type="video/webm"></video><div class="line-block">
<div class="line"><br /></div>
</div>
<p>Slideflow includes tools to easily interface with the PyTorch implementations of <a class="reference external" href="https://github.com/jamesdolezal/stylegan2-slideflow">StyleGAN2</a> and <a class="reference external" href="https://github.com/jamesdolezal/stylegan3-slideflow">StyleGAN3</a>, allowing you to train these Generative Adversarial Networks (GANs). Slideflow additionally includes tools to assist with image generation, interpolation between class labels, and interactively visualize GAN-generated images and their predictions. See our manuscript on the use of GANs to <a class="reference external" href="https://arxiv.org/abs/2211.06522">generate synthetic histology</a> for an example of how these networks might be used.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>StyleGAN requires PyTorch &lt;0.13 and Slideflow-NonCommercial, which can be installed with:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>slideflow-noncommercial
</pre></div>
</div>
</div>
<section id="training-stylegan">
<h2>Training StyleGAN<a class="headerlink" href="#training-stylegan" title="Permalink to this heading"></a></h2>
<p>The easiest way to train StyleGAN2/StyleGAN3 is with <a class="reference internal" href="../project/#slideflow.Project.gan_train" title="slideflow.Project.gan_train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_train()</span></code></a>. Both standard and class-conditional GANs are
supported. To train a GAN, pass a <a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Dataset</span></code></a>, experiment label,
and StyleGAN keyword arguments to this function:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Project</span><span class="p">(</span><span class="s1">&#39;/project/path&#39;</span><span class="p">)</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">400</span><span class="p">)</span>
<span class="n">P</span><span class="o">.</span><span class="n">gan_train</span><span class="p">(</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">dataset</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;stylegan3&#39;</span><span class="p">,</span>
<span class="n">cfg</span><span class="o">=</span><span class="s1">&#39;stylegan3-r&#39;</span><span class="p">,</span>
<span class="n">exp_label</span><span class="o">=</span><span class="s2">&quot;ExperimentLabel&quot;</span><span class="p">,</span>
<span class="n">gpus</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
<span class="n">batch</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="o">...</span>
<span class="p">)</span>
</pre></div>
</div>
<p>The trained networks will be saved in the <code class="docutils literal notranslate"><span class="pre">gan/</span></code> subfolder in the project directory.</p>
<p>StyleGAN2/3 can only be trained on images with sizes that are powers of 2. You can crop and/or resize images from a Dataset to match this requirement by using the <code class="docutils literal notranslate"><span class="pre">crop</span></code> and/or <code class="docutils literal notranslate"><span class="pre">resize</span></code> arguments:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
<span class="c1"># Train a GAN on images resized to 256x256</span>
<span class="n">P</span><span class="o">.</span><span class="n">gan_train</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">resize</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>See the <a class="reference internal" href="../project/#slideflow.Project.gan_train" title="slideflow.Project.gan_train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_train()</span></code></a> documentation for additional
keyword arguments to customize training.</p>
<section id="class-conditioning">
<h3>Class conditioning<a class="headerlink" href="#class-conditioning" title="Permalink to this heading"></a></h3>
<p>GANs can also be trained with class conditioning. To train a class-conditional GAN, simply provide a list of categorical
outcome labels to the <code class="docutils literal notranslate"><span class="pre">outcomes</span></code> argument of <a class="reference internal" href="../project/#slideflow.Project.gan_train" title="slideflow.Project.gan_train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_train()</span></code></a>. For example, to train a GAN with class conditioning on ER status:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_train</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">outcomes</span><span class="o">=</span><span class="s1">&#39;er_status&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
<section id="tile-level-labels">
<h3>Tile-level labels<a class="headerlink" href="#tile-level-labels" title="Permalink to this heading"></a></h3>
<p>In addition to class conditioning with slide-level labels, StyleGAN2/StyleGAN3 can be trained with tile-level class conditioning. Tile-level labels can be generated through ROI annotations, as described in <a class="reference internal" href="../tile_labels/#tile-labels"><span class="std std-ref">Strong Supervision with Tile Labels</span></a>.</p>
<p>Prepare a pandas dataframe, indexed with the format <code class="docutils literal notranslate"><span class="pre">{slide}-{x}-{y}</span></code>, where <code class="docutils literal notranslate"><span class="pre">slide</span></code> is the name of the slide (without extension), <code class="docutils literal notranslate"><span class="pre">x</span></code> is the corresponding tile x-coordinate, and <code class="docutils literal notranslate"><span class="pre">y</span></code> is the tile y-coordinate. The dataframe should have a single column, <code class="docutils literal notranslate"><span class="pre">label</span></code>, containing onehot-encoded category labels. For example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span>
<span class="n">index</span><span class="o">=</span><span class="p">[</span>
<span class="s1">&#39;slide1-251-425&#39;</span><span class="p">,</span>
<span class="s1">&#39;slide1-560-241&#39;</span><span class="p">,</span>
<span class="s1">&#39;slide1-321-502&#39;</span><span class="p">,</span>
<span class="o">...</span>
<span class="p">],</span>
<span class="n">data</span><span class="o">=</span><span class="p">{</span>
<span class="s1">&#39;label&#39;</span><span class="p">:</span> <span class="p">[</span>
<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="o">...</span>
<span class="p">]</span>
<span class="p">}</span>
<span class="p">)</span>
</pre></div>
</div>
<p>This dataframe can be generated, as described in <a class="reference internal" href="../tile_labels/#tile-labels"><span class="std std-ref">Strong Supervision with Tile Labels</span></a>, through the <a class="reference internal" href="../dataset/#slideflow.Dataset.get_tile_dataframe" title="slideflow.Dataset.get_tile_dataframe"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.get_tile_dataframe()</span></code></a> function. For GAN conditioning, the <code class="docutils literal notranslate"><span class="pre">label</span></code> column should be onehot-encoded.</p>
<p>Once the dataframe is complete, save it in parquet format:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">df</span><span class="o">.</span><span class="n">to_parquet</span><span class="p">(</span><span class="s1">&#39;tile_labels.parquet&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>And supply this file to the <code class="docutils literal notranslate"><span class="pre">tile_labels</span></code> argument of <a class="reference internal" href="../project/#slideflow.Project.gan_train" title="slideflow.Project.gan_train"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_train()</span></code></a>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_train</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">tile_labels</span><span class="o">=</span><span class="s1">&#39;tile_labels.parquet&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
</section>
<section id="generating-images">
<h2>Generating images<a class="headerlink" href="#generating-images" title="Permalink to this heading"></a></h2>
<p>Images can be generated from a trained GAN and exported either as loose images
in PNG or JPG format, or alternatively stored in TFRecords. Images are generated from a list
of seeds (list of int). Use the <a class="reference internal" href="../project/#slideflow.Project.gan_generate" title="slideflow.Project.gan_generate"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.gan_generate()</span></code></a> function
to generate images, with <code class="docutils literal notranslate"><span class="pre">out</span></code> set to a directory path if exporting loose images,
or <code class="docutils literal notranslate"><span class="pre">out</span></code> set to a filename ending in <code class="docutils literal notranslate"><span class="pre">.tfrecords</span></code> if saving images in
TFRecord format:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">network_pkl</span> <span class="o">=</span> <span class="s1">&#39;/path/to/trained/gan.pkl&#39;</span>
<span class="n">P</span><span class="o">.</span><span class="n">gan_generate</span><span class="p">(</span>
<span class="n">network_pkl</span><span class="p">,</span>
<span class="n">out</span><span class="o">=</span><span class="s1">&#39;target.tfrecords&#39;</span><span class="p">,</span>
<span class="n">seeds</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">100</span><span class="p">),</span>
<span class="o">...</span>
<span class="p">)</span>
</pre></div>
</div>
<p>The image format is set with the <code class="docutils literal notranslate"><span class="pre">format</span></code> argument:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_generate</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="nb">format</span><span class="o">=</span><span class="s1">&#39;jpg&#39;</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Class index (for class-conditional GANs) is set with <code class="docutils literal notranslate"><span class="pre">class_idx</span></code>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_generate</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">class_idx</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Finally, images can be resized after generation to match a target tile size:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">gan_generate</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">gan_px</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span>
<span class="n">gan_um</span><span class="o">=</span><span class="mi">400</span><span class="p">,</span>
<span class="n">target_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span>
<span class="n">target_um</span><span class="o">=</span><span class="mi">302</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<section id="interactive-visualization">
<h3>Interactive visualization<a class="headerlink" href="#interactive-visualization" title="Permalink to this heading"></a></h3>
<p>Slideflow Studio can be used to interactively visualize GAN-generated images (see <a class="reference internal" href="../studio/#studio"><span class="std std-ref">Slideflow Studio: Live Visualization</span></a>). Images can be directly exported from this interface. This tool also enables you to visualize real-time predictions for GAN generated images when as inputs to a trained classifier.</p>
<p>For more examples of using Slideflow to work with GAN-generated images, see <a class="reference external" href="https://github.com/jamesdolezal/synthetic-histology">our GitHub repository</a> for code accompanying the previously referenced manuscript.</p>
</section>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../saliency/" class="btn btn-neutral float-right" title="Saliency Maps" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../ssl/" class="btn btn-neutral" title="Self-Supervised Learning (SSL)" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Generative Networks (GANs)</a><ul>
<li><a class="reference internal" href="#training-stylegan">Training StyleGAN</a><ul>
<li><a class="reference internal" href="#class-conditioning">Class conditioning</a></li>
<li><a class="reference internal" href="#tile-level-labels">Tile-level labels</a></li>
</ul>
</li>
<li><a class="reference internal" href="#generating-images">Generating images</a><ul>
<li><a class="reference internal" href="#interactive-visualization">Interactive visualization</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>