<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Self-Supervised Learning (SSL) — slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Generative Networks (GANs)" href="../stylegan/" />
<link rel="prev" title="Multiple-Instance Learning (MIL)" href="../mil/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation & heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> >
</li>
<li>Self-Supervised Learning (SSL)</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/ssl.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="self-supervised-learning-ssl">
<span id="simclr-ssl"></span><h1>Self-Supervised Learning (SSL)<a class="headerlink" href="#self-supervised-learning-ssl" title="Permalink to this heading">¶</a></h1>
<p>Slideflow provides easy access to training the self-supervised, contrastive learning framework <a class="reference external" href="https://arxiv.org/abs/2002.05709">SimCLR</a>. Self-supervised learning provides an avenue for learning useful visual representations in your dataset without requiring ground-truth labels. These visual representations can be exported as feature vectors and used for downstream analyses such as <a class="reference internal" href="../posthoc/#slidemap"><span class="std std-ref">dimensionality reduction</span></a> or <a class="reference internal" href="../mil/#mil"><span class="std std-ref">multi-instance learning</span></a>.</p>
<p>The <code class="docutils literal notranslate"><span class="pre">slideflow.simclr</span></code> module contains a <a class="reference external" href="https://github.com/jamesdolezal/simclr/">forked Tensorflow implementation</a> minimally modified to interface with Slideflow. SimCLR models can be trained with <a class="reference internal" href="../project/#slideflow.Project.train_simclr" title="slideflow.Project.train_simclr"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.train_simclr()</span></code></a>, and SimCLR features can be calculated as with other models using <a class="reference internal" href="../project/#slideflow.Project.generate_features" title="slideflow.Project.generate_features"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.generate_features()</span></code></a>.</p>
<section id="training-simclr">
<h2>Training SimCLR<a class="headerlink" href="#training-simclr" title="Permalink to this heading">¶</a></h2>
<p>First, determine the SimCLR training parameters with <a class="reference internal" href="../simclr/#slideflow.simclr.get_args" title="slideflow.simclr.get_args"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.simclr.get_args()</span></code></a>. This function accepts parameters via keyword arguments, such as <code class="docutils literal notranslate"><span class="pre">learning_rate</span></code> and <code class="docutils literal notranslate"><span class="pre">temperature</span></code>, and returns a configured <a class="reference internal" href="../simclr/#slideflow.simclr.SimCLR_Args" title="slideflow.simclr.SimCLR_Args"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.simclr.SimCLR_Args</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">slideflow</span> <span class="kn">import</span> <span class="n">simclr</span>
<span class="n">args</span> <span class="o">=</span> <span class="n">simclr</span><span class="o">.</span><span class="n">get_args</span><span class="p">(</span>
<span class="n">temperature</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span>
<span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span>
<span class="n">train_epochs</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
<span class="n">image_size</span><span class="o">=</span><span class="mi">299</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Next, assemble a training and (optionally) a validation dataset. The validation dataset is used to assess contrastive loss during training, but is not required.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Load a project and dataset</span>
<span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">load_project</span><span class="p">(</span><span class="s1">'path'</span><span class="p">)</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">302</span><span class="p">)</span>
<span class="c1"># Split dataset into training/validation</span>
<span class="n">train_dts</span><span class="p">,</span> <span class="n">val_dts</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="n">val_fraction</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span>
<span class="n">model_type</span><span class="o">=</span><span class="s1">'classification'</span><span class="p">,</span>
<span class="n">labels</span><span class="o">=</span><span class="s1">'subtype'</span><span class="p">)</span>
</pre></div>
</div>
<p>Finally, SimCLR can be trained with <a class="reference internal" href="../project/#slideflow.Project.train_simclr" title="slideflow.Project.train_simclr"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.train_simclr()</span></code></a>. You can train with a single dataset:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">train_simclr</span><span class="p">(</span><span class="n">args</span><span class="p">,</span> <span class="n">dataset</span><span class="p">)</span>
</pre></div>
</div>
<p>You can train with an optional validation dataset:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">train_simclr</span><span class="p">(</span>
<span class="n">args</span><span class="p">,</span>
<span class="n">train_dataset</span><span class="o">=</span><span class="n">train_dts</span><span class="p">,</span>
<span class="n">val_dataset</span><span class="o">=</span><span class="n">val_dts</span>
<span class="p">)</span>
</pre></div>
</div>
<p>And you can also optionally provide labels for training the supervised head. To train a supervised head, you’ll also need to set the SimCLR argument <code class="docutils literal notranslate"><span class="pre">lineareval_while_pretraining=True</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># SimCLR args</span>
<span class="n">args</span> <span class="o">=</span> <span class="n">simclr</span><span class="o">.</span><span class="n">get_args</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">lineareval_while_pretraining</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
<span class="c1"># Train with validation & supervised head</span>
<span class="n">P</span><span class="o">.</span><span class="n">train_simclr</span><span class="p">(</span>
<span class="n">args</span><span class="p">,</span>
<span class="n">train_dataset</span><span class="o">=</span><span class="n">train_dts</span><span class="p">,</span>
<span class="n">val_dataset</span><span class="o">=</span><span class="n">val_dts</span><span class="p">,</span>
<span class="n">outcomes</span><span class="o">=</span><span class="s1">'subtype'</span>
<span class="p">)</span>
</pre></div>
</div>
<p>The SimCLR model checkpoints and final saved model will be saved in the <code class="docutils literal notranslate"><span class="pre">simclr/</span></code> folder within the project root directory.</p>
</section>
<section id="training-dinov2">
<span id="dinov2"></span><h2>Training DINOv2<a class="headerlink" href="#training-dinov2" title="Permalink to this heading">¶</a></h2>
<p>A lightly modified version of <a class="reference external" href="https://arxiv.org/abs/2304.07193">DINOv2</a> with Slideflow integration is available on <a class="reference external" href="https://github.com/jamesdolezal/dinov2">GitHub</a>. This version facilitates training DINOv2 with Slideflow datasets and adds stain augmentation to the training pipeline.</p>
<p>To train DINOv2, first install the package:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>git+https://github.com/jamesdolezal/dinov2.git
</pre></div>
</div>
<p>Next, configure the training parameters and datsets by providing a configuration YAML file. This configuration file should contain a <code class="docutils literal notranslate"><span class="pre">slideflow</span></code> section, which specifies the Slideflow project and dataset to use for training. An example YAML file is shown below:</p>
<div class="highlight-yaml notranslate"><div class="highlight"><pre><span></span><span class="nt">train</span><span class="p">:</span>
<span class="w"> </span><span class="nt">dataset_path</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">slideflow</span>
<span class="w"> </span><span class="nt">batch_size_per_gpu</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">32</span>
<span class="w"> </span><span class="nt">slideflow</span><span class="p">:</span>
<span class="w"> </span><span class="nt">project</span><span class="p">:</span><span class="w"> </span><span class="s">"/mnt/data/projects/TCGA_THCA_BRAF"</span>
<span class="w"> </span><span class="nt">dataset</span><span class="p">:</span>
<span class="w"> </span><span class="nt">tile_px</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">299</span>
<span class="w"> </span><span class="nt">tile_um</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">302</span>
<span class="w"> </span><span class="nt">filters</span><span class="p">:</span>
<span class="w"> </span><span class="nt">brs_class</span><span class="p">:</span>
<span class="w"> </span><span class="p p-Indicator">-</span><span class="w"> </span><span class="s">"Braf-like"</span>
<span class="w"> </span><span class="p p-Indicator">-</span><span class="w"> </span><span class="s">"Ras-like"</span>
<span class="w"> </span><span class="nt">seed</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">42</span>
<span class="w"> </span><span class="nt">outcome_labels</span><span class="p">:</span><span class="w"> </span><span class="s">"brs_class"</span>
<span class="w"> </span><span class="nt">normalizer</span><span class="p">:</span><span class="w"> </span><span class="s">"reinhard_mask"</span>
<span class="w"> </span><span class="nt">interleave_kwargs</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">null</span>
</pre></div>
</div>
<p>See the <a class="reference external" href="https://github.com/jamesdolezal/dinov2">DINOv2 README</a> for more details on the configuration file format.</p>
<p>Finally, train DINOv2 using the same command-line interface as the original DINOv2 implementation. For example, to train DINOv2 on 4 GPUs on a single node:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>torchrun<span class="w"> </span>--nproc_per_node<span class="o">=</span><span class="m">4</span><span class="w"> </span>-m<span class="w"> </span><span class="s2">"dinov2.train.train"</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--config-file<span class="w"> </span>/path/to/config.yaml<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--output-dir<span class="w"> </span>/path/to/output_dir
</pre></div>
</div>
<p>The teacher weights will be saved in <code class="docutils literal notranslate"><span class="pre">outdir/eval/.../teacher_checkpoint.pth</span></code>, and the final configuration YAML will be saved in <code class="docutils literal notranslate"><span class="pre">outdir/config.yaml</span></code>.</p>
</section>
<section id="generating-features">
<h2>Generating features<a class="headerlink" href="#generating-features" title="Permalink to this heading">¶</a></h2>
<p>Generating features from a trained SSL is straightforward - use the same <a class="reference internal" href="../project/#slideflow.Project.generate_features" title="slideflow.Project.generate_features"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.generate_features()</span></code></a> and <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures" title="slideflow.DatasetFeatures"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures</span></code></a> interfaces as <a class="reference internal" href="../posthoc/#dataset-features"><span class="std std-ref">previously described</span></a>, providing a path to a saved SimCLR model or checkpoint.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Create the SimCLR feature extractor</span>
<span class="n">simclr</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">'simclr'</span><span class="p">,</span>
<span class="n">ckpt</span><span class="o">=</span><span class="s1">'/path/to/simclr.ckpt'</span>
<span class="p">)</span>
<span class="c1"># Calculate SimCLR features for a dataset</span>
<span class="n">features</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span><span class="n">simclr</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
<p>For DINOv2 models, use <code class="docutils literal notranslate"><span class="pre">'dinov2'</span></code> as the first argument, and pass the model configuration YAML file to <code class="docutils literal notranslate"><span class="pre">cfg</span></code> and the teacher checkpoint weights to <code class="docutils literal notranslate"><span class="pre">weights</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dinov2</span> <span class="o">=</span> <span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">'dinov2'</span><span class="p">,</span>
<span class="n">weights</span><span class="o">=</span><span class="s1">'/path/to/teacher_checkpoint.pth'</span><span class="p">,</span>
<span class="n">cfg</span><span class="o">=</span><span class="s1">'/path/to/config.yaml'</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../stylegan/" class="btn btn-neutral float-right" title="Generative Networks (GANs)" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../mil/" class="btn btn-neutral" title="Multiple-Instance Learning (MIL)" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Self-Supervised Learning (SSL)</a><ul>
<li><a class="reference internal" href="#training-simclr">Training SimCLR</a></li>
<li><a class="reference internal" href="#training-dinov2">Training DINOv2</a></li>
<li><a class="reference internal" href="#generating-features">Generating features</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>