[78ef36]: / docs / ssl / index.html

Download this file

548 lines (392 with data), 32.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Self-Supervised Learning (SSL) &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Generative Networks (GANs)" href="../stylegan/" />
<link rel="prev" title="Multiple-Instance Learning (MIL)" href="../mil/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>Self-Supervised Learning (SSL)</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/ssl.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="self-supervised-learning-ssl">
<span id="simclr-ssl"></span><h1>Self-Supervised Learning (SSL)<a class="headerlink" href="#self-supervised-learning-ssl" title="Permalink to this heading"></a></h1>
<p>Slideflow provides easy access to training the self-supervised, contrastive learning framework <a class="reference external" href="https://arxiv.org/abs/2002.05709">SimCLR</a>. Self-supervised learning provides an avenue for learning useful visual representations in your dataset without requiring ground-truth labels. These visual representations can be exported as feature vectors and used for downstream analyses such as <a class="reference internal" href="../posthoc/#slidemap"><span class="std std-ref">dimensionality reduction</span></a> or <a class="reference internal" href="../mil/#mil"><span class="std std-ref">multi-instance learning</span></a>.</p>
<p>The <code class="docutils literal notranslate"><span class="pre">slideflow.simclr</span></code> module contains a <a class="reference external" href="https://github.com/jamesdolezal/simclr/">forked Tensorflow implementation</a> minimally modified to interface with Slideflow. SimCLR models can be trained with <a class="reference internal" href="../project/#slideflow.Project.train_simclr" title="slideflow.Project.train_simclr"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.train_simclr()</span></code></a>, and SimCLR features can be calculated as with other models using <a class="reference internal" href="../project/#slideflow.Project.generate_features" title="slideflow.Project.generate_features"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.generate_features()</span></code></a>.</p>
<section id="training-simclr">
<h2>Training SimCLR<a class="headerlink" href="#training-simclr" title="Permalink to this heading"></a></h2>
<p>First, determine the SimCLR training parameters with <a class="reference internal" href="../simclr/#slideflow.simclr.get_args" title="slideflow.simclr.get_args"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.simclr.get_args()</span></code></a>. This function accepts parameters via keyword arguments, such as <code class="docutils literal notranslate"><span class="pre">learning_rate</span></code> and <code class="docutils literal notranslate"><span class="pre">temperature</span></code>, and returns a configured <a class="reference internal" href="../simclr/#slideflow.simclr.SimCLR_Args" title="slideflow.simclr.SimCLR_Args"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.simclr.SimCLR_Args</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">slideflow</span> <span class="kn">import</span> <span class="n">simclr</span>
<span class="n">args</span> <span class="o">=</span> <span class="n">simclr</span><span class="o">.</span><span class="n">get_args</span><span class="p">(</span>
<span class="n">temperature</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span>
<span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span>
<span class="n">train_epochs</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
<span class="n">image_size</span><span class="o">=</span><span class="mi">299</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Next, assemble a training and (optionally) a validation dataset. The validation dataset is used to assess contrastive loss during training, but is not required.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Load a project and dataset</span>
<span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">load_project</span><span class="p">(</span><span class="s1">&#39;path&#39;</span><span class="p">)</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">302</span><span class="p">)</span>
<span class="c1"># Split dataset into training/validation</span>
<span class="n">train_dts</span><span class="p">,</span> <span class="n">val_dts</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="n">val_fraction</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span>
<span class="n">model_type</span><span class="o">=</span><span class="s1">&#39;classification&#39;</span><span class="p">,</span>
<span class="n">labels</span><span class="o">=</span><span class="s1">&#39;subtype&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Finally, SimCLR can be trained with <a class="reference internal" href="../project/#slideflow.Project.train_simclr" title="slideflow.Project.train_simclr"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.train_simclr()</span></code></a>. You can train with a single dataset:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">train_simclr</span><span class="p">(</span><span class="n">args</span><span class="p">,</span> <span class="n">dataset</span><span class="p">)</span>
</pre></div>
</div>
<p>You can train with an optional validation dataset:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">train_simclr</span><span class="p">(</span>
<span class="n">args</span><span class="p">,</span>
<span class="n">train_dataset</span><span class="o">=</span><span class="n">train_dts</span><span class="p">,</span>
<span class="n">val_dataset</span><span class="o">=</span><span class="n">val_dts</span>
<span class="p">)</span>
</pre></div>
</div>
<p>And you can also optionally provide labels for training the supervised head. To train a supervised head, you’ll also need to set the SimCLR argument <code class="docutils literal notranslate"><span class="pre">lineareval_while_pretraining=True</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># SimCLR args</span>
<span class="n">args</span> <span class="o">=</span> <span class="n">simclr</span><span class="o">.</span><span class="n">get_args</span><span class="p">(</span>
<span class="o">...</span><span class="p">,</span>
<span class="n">lineareval_while_pretraining</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
<span class="c1"># Train with validation &amp; supervised head</span>
<span class="n">P</span><span class="o">.</span><span class="n">train_simclr</span><span class="p">(</span>
<span class="n">args</span><span class="p">,</span>
<span class="n">train_dataset</span><span class="o">=</span><span class="n">train_dts</span><span class="p">,</span>
<span class="n">val_dataset</span><span class="o">=</span><span class="n">val_dts</span><span class="p">,</span>
<span class="n">outcomes</span><span class="o">=</span><span class="s1">&#39;subtype&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p>The SimCLR model checkpoints and final saved model will be saved in the <code class="docutils literal notranslate"><span class="pre">simclr/</span></code> folder within the project root directory.</p>
</section>
<section id="training-dinov2">
<span id="dinov2"></span><h2>Training DINOv2<a class="headerlink" href="#training-dinov2" title="Permalink to this heading"></a></h2>
<p>A lightly modified version of <a class="reference external" href="https://arxiv.org/abs/2304.07193">DINOv2</a> with Slideflow integration is available on <a class="reference external" href="https://github.com/jamesdolezal/dinov2">GitHub</a>. This version facilitates training DINOv2 with Slideflow datasets and adds stain augmentation to the training pipeline.</p>
<p>To train DINOv2, first install the package:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>git+https://github.com/jamesdolezal/dinov2.git
</pre></div>
</div>
<p>Next, configure the training parameters and datsets by providing a configuration YAML file. This configuration file should contain a <code class="docutils literal notranslate"><span class="pre">slideflow</span></code> section, which specifies the Slideflow project and dataset to use for training. An example YAML file is shown below:</p>
<div class="highlight-yaml notranslate"><div class="highlight"><pre><span></span><span class="nt">train</span><span class="p">:</span>
<span class="w"> </span><span class="nt">dataset_path</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">slideflow</span>
<span class="w"> </span><span class="nt">batch_size_per_gpu</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">32</span>
<span class="w"> </span><span class="nt">slideflow</span><span class="p">:</span>
<span class="w"> </span><span class="nt">project</span><span class="p">:</span><span class="w"> </span><span class="s">&quot;/mnt/data/projects/TCGA_THCA_BRAF&quot;</span>
<span class="w"> </span><span class="nt">dataset</span><span class="p">:</span>
<span class="w"> </span><span class="nt">tile_px</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">299</span>
<span class="w"> </span><span class="nt">tile_um</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">302</span>
<span class="w"> </span><span class="nt">filters</span><span class="p">:</span>
<span class="w"> </span><span class="nt">brs_class</span><span class="p">:</span>
<span class="w"> </span><span class="p p-Indicator">-</span><span class="w"> </span><span class="s">&quot;Braf-like&quot;</span>
<span class="w"> </span><span class="p p-Indicator">-</span><span class="w"> </span><span class="s">&quot;Ras-like&quot;</span>
<span class="w"> </span><span class="nt">seed</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">42</span>
<span class="w"> </span><span class="nt">outcome_labels</span><span class="p">:</span><span class="w"> </span><span class="s">&quot;brs_class&quot;</span>
<span class="w"> </span><span class="nt">normalizer</span><span class="p">:</span><span class="w"> </span><span class="s">&quot;reinhard_mask&quot;</span>
<span class="w"> </span><span class="nt">interleave_kwargs</span><span class="p">:</span><span class="w"> </span><span class="l l-Scalar l-Scalar-Plain">null</span>
</pre></div>
</div>
<p>See the <a class="reference external" href="https://github.com/jamesdolezal/dinov2">DINOv2 README</a> for more details on the configuration file format.</p>
<p>Finally, train DINOv2 using the same command-line interface as the original DINOv2 implementation. For example, to train DINOv2 on 4 GPUs on a single node:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>torchrun<span class="w"> </span>--nproc_per_node<span class="o">=</span><span class="m">4</span><span class="w"> </span>-m<span class="w"> </span><span class="s2">&quot;dinov2.train.train&quot;</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--config-file<span class="w"> </span>/path/to/config.yaml<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--output-dir<span class="w"> </span>/path/to/output_dir
</pre></div>
</div>
<p>The teacher weights will be saved in <code class="docutils literal notranslate"><span class="pre">outdir/eval/.../teacher_checkpoint.pth</span></code>, and the final configuration YAML will be saved in <code class="docutils literal notranslate"><span class="pre">outdir/config.yaml</span></code>.</p>
</section>
<section id="generating-features">
<h2>Generating features<a class="headerlink" href="#generating-features" title="Permalink to this heading"></a></h2>
<p>Generating features from a trained SSL is straightforward - use the same <a class="reference internal" href="../project/#slideflow.Project.generate_features" title="slideflow.Project.generate_features"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.generate_features()</span></code></a> and <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures" title="slideflow.DatasetFeatures"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures</span></code></a> interfaces as <a class="reference internal" href="../posthoc/#dataset-features"><span class="std std-ref">previously described</span></a>, providing a path to a saved SimCLR model or checkpoint.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Create the SimCLR feature extractor</span>
<span class="n">simclr</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;simclr&#39;</span><span class="p">,</span>
<span class="n">ckpt</span><span class="o">=</span><span class="s1">&#39;/path/to/simclr.ckpt&#39;</span>
<span class="p">)</span>
<span class="c1"># Calculate SimCLR features for a dataset</span>
<span class="n">features</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span><span class="n">simclr</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
<p>For DINOv2 models, use <code class="docutils literal notranslate"><span class="pre">'dinov2'</span></code> as the first argument, and pass the model configuration YAML file to <code class="docutils literal notranslate"><span class="pre">cfg</span></code> and the teacher checkpoint weights to <code class="docutils literal notranslate"><span class="pre">weights</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dinov2</span> <span class="o">=</span> <span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;dinov2&#39;</span><span class="p">,</span>
<span class="n">weights</span><span class="o">=</span><span class="s1">&#39;/path/to/teacher_checkpoint.pth&#39;</span><span class="p">,</span>
<span class="n">cfg</span><span class="o">=</span><span class="s1">&#39;/path/to/config.yaml&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../stylegan/" class="btn btn-neutral float-right" title="Generative Networks (GANs)" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../mil/" class="btn btn-neutral" title="Multiple-Instance Learning (MIL)" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Self-Supervised Learning (SSL)</a><ul>
<li><a class="reference internal" href="#training-simclr">Training SimCLR</a></li>
<li><a class="reference internal" href="#training-dinov2">Training DINOv2</a></li>
<li><a class="reference internal" href="#generating-features">Generating features</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>