<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Quickstart — slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Setting up a Project" href="../project_setup/" />
<link rel="prev" title="Overview" href="../overview/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation & heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> >
</li>
<li>Quickstart</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/quickstart.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="quickstart">
<h1>Quickstart<a class="headerlink" href="#quickstart" title="Permalink to this heading">¶</a></h1>
<p>This section provides an example of using Slideflow to build a deep learning classifier from digital pathology slides. Follow the links in each section for more information.</p>
<section id="preparing-a-project">
<h2>Preparing a project<a class="headerlink" href="#preparing-a-project" title="Permalink to this heading">¶</a></h2>
<p>Slideflow experiments are organized using <a class="reference internal" href="../project/#slideflow.Project" title="slideflow.Project"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Project</span></code></a>, which supervises storage of data, saved models, and results. The <code class="docutils literal notranslate"><span class="pre">slideflow.project</span></code> module has three preconfigured projects with associated slides and clinical annotations: <code class="docutils literal notranslate"><span class="pre">LungAdenoSquam</span></code>, <code class="docutils literal notranslate"><span class="pre">ThyroidBRS</span></code>, and <code class="docutils literal notranslate"><span class="pre">BreastER</span></code>.</p>
<p>For this example, we will the <code class="docutils literal notranslate"><span class="pre">LungAdenoSquam</span></code> project to train a classifier to predict lung adenocarcinoma (Adeno) vs. squamous cell carcinoma (Squam).</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Download preconfigured project, with slides and annotations.</span>
<span class="n">project</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">create_project</span><span class="p">(</span>
<span class="n">root</span><span class="o">=</span><span class="s1">'data'</span><span class="p">,</span>
<span class="n">cfg</span><span class="o">=</span><span class="n">sf</span><span class="o">.</span><span class="n">project</span><span class="o">.</span><span class="n">LungAdenoSquam</span><span class="p">(),</span>
<span class="n">download</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Read more about <a class="reference internal" href="../project_setup/#project-setup"><span class="std std-ref">setting up a project on your own data</span></a>.</p>
</section>
<section id="data-preparation">
<h2>Data preparation<a class="headerlink" href="#data-preparation" title="Permalink to this heading">¶</a></h2>
<p>The core imaging data used in Slideflow are image tiles <a class="reference internal" href="../slide_processing/#filtering"><span class="std std-ref">extracted from slides</span></a> at a specific magnification and pixel resolution. Tile extraction and downstream image processing is handled through the primitive <a class="reference internal" href="../datasets_and_val/#datasets-and-validation"><span class="std std-ref">slideflow.Dataset</span></a>. We can request a <code class="docutils literal notranslate"><span class="pre">Dataset</span></code> at a given tile size from our project using <a class="reference internal" href="../project/#slideflow.Project.dataset" title="slideflow.Project.dataset"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.dataset()</span></code></a>. Tile magnification can be specified in microns (as an <code class="docutils literal notranslate"><span class="pre">int</span></code>) or as optical magnification (e.g. <code class="docutils literal notranslate"><span class="pre">'40x'</span></code>).</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Prepare a dataset of image tiles.</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">project</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="c1"># Tile size, in pixels.</span>
<span class="n">tile_um</span><span class="o">=</span><span class="s1">'10x'</span> <span class="c1"># Tile size, in microns or magnification.</span>
<span class="p">)</span>
<span class="n">dataset</span><span class="o">.</span><span class="n">summary</span><span class="p">()</span>
</pre></div>
</div>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Overview:
╒===============================================╕
│ Configuration file: │ /mnt/data/datasets.json │
│ Tile size (px): │ 299 │
│ Tile size (um): │ 10x │
│ Slides: │ 941 │
│ Patients: │ 941 │
│ Slides with ROIs: │ 941 │
│ Patients with ROIs: │ 941 │
╘===============================================╛
Filters:
╒====================╕
│ Filters: │ {} │
├--------------------┤
│ Filter Blank: │ [] │
├--------------------┤
│ Min Tiles: │ 0 │
╘====================╛
Sources:
TCGA_LUNG
╒==============================================╕
│ slides │ /mnt/raid/SLIDES/TCGA_LUNG │
│ roi │ /mnt/raid/SLIDES/TCGA_LUNG │
│ tiles │ /mnt/rocket/tiles/TCGA_LUNG │
│ tfrecords │ /mnt/rocket/tfrecords/TCGA_LUNG/ │
│ label │ 299px_10x │
╘==============================================╛
Number of tiles in TFRecords: 0
Annotation columns:
Index(['patient', 'subtype', 'site', 'slide'],
dtype='object')
</pre></div>
</div>
<section id="tile-extraction">
<h3>Tile extraction<a class="headerlink" href="#tile-extraction" title="Permalink to this heading">¶</a></h3>
<p>We prepare imaging data for training by extracting tiles from slides. Background areas of slides will be filtered out with Otsu’s thresholding.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Extract tiles from all slides in the dataset.</span>
<span class="n">dataset</span><span class="o">.</span><span class="n">extract_tiles</span><span class="p">(</span><span class="n">qc</span><span class="o">=</span><span class="s1">'otsu'</span><span class="p">)</span>
</pre></div>
</div>
<p>Read more about tile extraction and <a class="reference internal" href="../slide_processing/#filtering"><span class="std std-ref">slide processing in Slideflow</span></a>.</p>
</section>
<section id="held-out-test-sets">
<h3>Held-out test sets<a class="headerlink" href="#held-out-test-sets" title="Permalink to this heading">¶</a></h3>
<p>Now that we have our dataset and we’ve completed the initial tile image processing, we’ll split the dataset into a training cohort and a held-out test cohort with <a class="reference internal" href="../dataset/#slideflow.Dataset.split" title="slideflow.Dataset.split"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.split()</span></code></a>. We’ll split while balancing the outcome <code class="docutils literal notranslate"><span class="pre">'subtype'</span></code> equally in the training and test dataset, with 30% of the data retained in the held-out set.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Split our dataset into a training and held-out test set.</span>
<span class="n">train_dataset</span><span class="p">,</span> <span class="n">test_dataset</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="n">model_type</span><span class="o">=</span><span class="s1">'classification'</span><span class="p">,</span>
<span class="n">labels</span><span class="o">=</span><span class="s1">'subtype'</span><span class="p">,</span>
<span class="n">val_fraction</span><span class="o">=</span><span class="mf">0.3</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Read more about <a class="reference internal" href="../datasets_and_val/#datasets-and-validation"><span class="std std-ref">Dataset management</span></a>.</p>
</section>
</section>
<section id="configuring-models">
<h2>Configuring models<a class="headerlink" href="#configuring-models" title="Permalink to this heading">¶</a></h2>
<p>Neural network models are prepared for training with <a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.ModelParams"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.ModelParams</span></code></a>, through which we define the model architecture, loss, and hyperparameters. Dozens of architectures are available in both the Tensorflow and PyTorch backends, and both neural network <a class="reference internal" href="../tutorial3/#tutorial3"><span class="std std-ref">architectures</span></a> and <a class="reference internal" href="../training/#custom-loss"><span class="std std-ref">loss</span></a> functions can be customized. In this example, we will use the included Xception network.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Prepare a model and hyperparameters.</span>
<span class="n">params</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">ModelParams</span><span class="p">(</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span>
<span class="n">tile_um</span><span class="o">=</span><span class="s1">'10x'</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="s1">'xception'</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.0001</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Read more about <a class="reference internal" href="../training/#training"><span class="std std-ref">hyperparameter optimization in Slideflow</span></a>.</p>
</section>
<section id="training-a-model">
<h2>Training a model<a class="headerlink" href="#training-a-model" title="Permalink to this heading">¶</a></h2>
<p>Models can be trained from these hyperparameter configurations using <code class="xref py py-meth docutils literal notranslate"><span class="pre">Project.train()</span></code>. Models can be trained to categorical, multi-categorical, continuous, or time-series outcomes, and the training process is <a class="reference internal" href="../training/#training"><span class="std std-ref">highly configurable</span></a>. In this case, we are training a binary categorization model to predict the outcome <code class="docutils literal notranslate"><span class="pre">'subtype'</span></code>, and we will distribute training across multiple GPUs.</p>
<p>By default, Slideflow will train/validate on the full dataset using k-fold cross-validation, but validation settings <a class="reference internal" href="../datasets_and_val/#validation-planning"><span class="std std-ref">can be customized</span></a>. If you would like to restrict training to only a subset of your data - for example, to leave a held-out test set untouched - you can manually specify a dataset for training. In this case, we will train on <code class="docutils literal notranslate"><span class="pre">train_dataset</span></code>, and allow Slideflow to further split this into training and validation using three-fold cross-validation.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Train a model from a set of hyperparameters.</span>
<span class="n">results</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">train</span><span class="p">(</span>
<span class="s1">'subtype'</span><span class="p">,</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">train_dataset</span><span class="p">,</span>
<span class="n">params</span><span class="o">=</span><span class="n">params</span><span class="p">,</span>
<span class="n">val_strategy</span><span class="o">=</span><span class="s1">'k-fold'</span><span class="p">,</span>
<span class="n">val_k_fold</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">multi_gpu</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Models and training results will be saved in the project <code class="docutils literal notranslate"><span class="pre">models/</span></code> folder.</p>
<p>Read more about <a class="reference internal" href="../training/#training"><span class="std std-ref">training a model</span></a>.</p>
</section>
<section id="evaluating-a-trained-model">
<h2>Evaluating a trained model<a class="headerlink" href="#evaluating-a-trained-model" title="Permalink to this heading">¶</a></h2>
<p>After training, you can test model performance on a held-out test dataset with <code class="xref py py-meth docutils literal notranslate"><span class="pre">Project.evaluate()</span></code>, or generate predictions without evaluation (when ground-truth labels are not available) with <code class="xref py py-meth docutils literal notranslate"><span class="pre">Project.predict()</span></code>. As with <code class="xref py py-meth docutils literal notranslate"><span class="pre">Project.train()</span></code>, we can specify a <a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Dataset</span></code></a> to evaluate.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Train a model from a set of hyperparameters.</span>
<span class="n">test_results</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s1">'/path/to/trained_model_epoch1'</span>
<span class="n">outcomes</span><span class="o">=</span><span class="s1">'subtype'</span><span class="p">,</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">test_dataset</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Read more about <a class="reference internal" href="../evaluation/#evaluation"><span class="std std-ref">model evaluation</span></a>.</p>
</section>
<section id="post-hoc-analysis">
<h2>Post-hoc analysis<a class="headerlink" href="#post-hoc-analysis" title="Permalink to this heading">¶</a></h2>
<p>Slideflow includes a number of analytical tools for working with trained models. Read more about <a class="reference internal" href="../evaluation/#evaluation"><span class="std std-ref">heatmaps</span></a>, <a class="reference internal" href="../stylegan/#stylegan"><span class="std std-ref">model explainability</span></a>, <a class="reference internal" href="../posthoc/#activations"><span class="std std-ref">analysis of layer activations</span></a>, and real-time inference in an interactive <a class="reference internal" href="../studio/#studio"><span class="std std-ref">whole-slide image reader</span></a>.</p>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../project_setup/" class="btn btn-neutral float-right" title="Setting up a Project" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../overview/" class="btn btn-neutral" title="Overview" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Quickstart</a><ul>
<li><a class="reference internal" href="#preparing-a-project">Preparing a project</a></li>
<li><a class="reference internal" href="#data-preparation">Data preparation</a><ul>
<li><a class="reference internal" href="#tile-extraction">Tile extraction</a></li>
<li><a class="reference internal" href="#held-out-test-sets">Held-out test sets</a></li>
</ul>
</li>
<li><a class="reference internal" href="#configuring-models">Configuring models</a></li>
<li><a class="reference internal" href="#training-a-model">Training a model</a></li>
<li><a class="reference internal" href="#evaluating-a-trained-model">Evaluating a trained model</a></li>
<li><a class="reference internal" href="#post-hoc-analysis">Post-hoc analysis</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>