[78ef36]: / docs / quickstart / index.html

Download this file

575 lines (420 with data), 33.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Quickstart &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Setting up a Project" href="../project_setup/" />
<link rel="prev" title="Overview" href="../overview/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>Quickstart</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/quickstart.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="quickstart">
<h1>Quickstart<a class="headerlink" href="#quickstart" title="Permalink to this heading"></a></h1>
<p>This section provides an example of using Slideflow to build a deep learning classifier from digital pathology slides. Follow the links in each section for more information.</p>
<section id="preparing-a-project">
<h2>Preparing a project<a class="headerlink" href="#preparing-a-project" title="Permalink to this heading"></a></h2>
<p>Slideflow experiments are organized using <a class="reference internal" href="../project/#slideflow.Project" title="slideflow.Project"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Project</span></code></a>, which supervises storage of data, saved models, and results. The <code class="docutils literal notranslate"><span class="pre">slideflow.project</span></code> module has three preconfigured projects with associated slides and clinical annotations: <code class="docutils literal notranslate"><span class="pre">LungAdenoSquam</span></code>, <code class="docutils literal notranslate"><span class="pre">ThyroidBRS</span></code>, and <code class="docutils literal notranslate"><span class="pre">BreastER</span></code>.</p>
<p>For this example, we will the <code class="docutils literal notranslate"><span class="pre">LungAdenoSquam</span></code> project to train a classifier to predict lung adenocarcinoma (Adeno) vs. squamous cell carcinoma (Squam).</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Download preconfigured project, with slides and annotations.</span>
<span class="n">project</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">create_project</span><span class="p">(</span>
<span class="n">root</span><span class="o">=</span><span class="s1">&#39;data&#39;</span><span class="p">,</span>
<span class="n">cfg</span><span class="o">=</span><span class="n">sf</span><span class="o">.</span><span class="n">project</span><span class="o">.</span><span class="n">LungAdenoSquam</span><span class="p">(),</span>
<span class="n">download</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Read more about <a class="reference internal" href="../project_setup/#project-setup"><span class="std std-ref">setting up a project on your own data</span></a>.</p>
</section>
<section id="data-preparation">
<h2>Data preparation<a class="headerlink" href="#data-preparation" title="Permalink to this heading"></a></h2>
<p>The core imaging data used in Slideflow are image tiles <a class="reference internal" href="../slide_processing/#filtering"><span class="std std-ref">extracted from slides</span></a> at a specific magnification and pixel resolution. Tile extraction and downstream image processing is handled through the primitive <a class="reference internal" href="../datasets_and_val/#datasets-and-validation"><span class="std std-ref">slideflow.Dataset</span></a>. We can request a <code class="docutils literal notranslate"><span class="pre">Dataset</span></code> at a given tile size from our project using <a class="reference internal" href="../project/#slideflow.Project.dataset" title="slideflow.Project.dataset"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.dataset()</span></code></a>. Tile magnification can be specified in microns (as an <code class="docutils literal notranslate"><span class="pre">int</span></code>) or as optical magnification (e.g. <code class="docutils literal notranslate"><span class="pre">'40x'</span></code>).</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Prepare a dataset of image tiles.</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">project</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="c1"># Tile size, in pixels.</span>
<span class="n">tile_um</span><span class="o">=</span><span class="s1">&#39;10x&#39;</span> <span class="c1"># Tile size, in microns or magnification.</span>
<span class="p">)</span>
<span class="n">dataset</span><span class="o">.</span><span class="n">summary</span><span class="p">()</span>
</pre></div>
</div>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Overview:
╒===============================================╕
│ Configuration file: │ /mnt/data/datasets.json │
│ Tile size (px): │ 299 │
│ Tile size (um): │ 10x │
│ Slides: │ 941 │
│ Patients: │ 941 │
│ Slides with ROIs: │ 941 │
│ Patients with ROIs: │ 941 │
╘===============================================╛
Filters:
╒====================╕
│ Filters: │ {} │
├--------------------┤
│ Filter Blank: │ [] │
├--------------------┤
│ Min Tiles: │ 0 │
╘====================╛
Sources:
TCGA_LUNG
╒==============================================╕
│ slides │ /mnt/raid/SLIDES/TCGA_LUNG │
│ roi │ /mnt/raid/SLIDES/TCGA_LUNG │
│ tiles │ /mnt/rocket/tiles/TCGA_LUNG │
│ tfrecords │ /mnt/rocket/tfrecords/TCGA_LUNG/ │
│ label │ 299px_10x │
╘==============================================╛
Number of tiles in TFRecords: 0
Annotation columns:
Index([&#39;patient&#39;, &#39;subtype&#39;, &#39;site&#39;, &#39;slide&#39;],
dtype=&#39;object&#39;)
</pre></div>
</div>
<section id="tile-extraction">
<h3>Tile extraction<a class="headerlink" href="#tile-extraction" title="Permalink to this heading"></a></h3>
<p>We prepare imaging data for training by extracting tiles from slides. Background areas of slides will be filtered out with Otsu’s thresholding.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Extract tiles from all slides in the dataset.</span>
<span class="n">dataset</span><span class="o">.</span><span class="n">extract_tiles</span><span class="p">(</span><span class="n">qc</span><span class="o">=</span><span class="s1">&#39;otsu&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Read more about tile extraction and <a class="reference internal" href="../slide_processing/#filtering"><span class="std std-ref">slide processing in Slideflow</span></a>.</p>
</section>
<section id="held-out-test-sets">
<h3>Held-out test sets<a class="headerlink" href="#held-out-test-sets" title="Permalink to this heading"></a></h3>
<p>Now that we have our dataset and we’ve completed the initial tile image processing, we’ll split the dataset into a training cohort and a held-out test cohort with <a class="reference internal" href="../dataset/#slideflow.Dataset.split" title="slideflow.Dataset.split"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.split()</span></code></a>. We’ll split while balancing the outcome <code class="docutils literal notranslate"><span class="pre">'subtype'</span></code> equally in the training and test dataset, with 30% of the data retained in the held-out set.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Split our dataset into a training and held-out test set.</span>
<span class="n">train_dataset</span><span class="p">,</span> <span class="n">test_dataset</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="n">model_type</span><span class="o">=</span><span class="s1">&#39;classification&#39;</span><span class="p">,</span>
<span class="n">labels</span><span class="o">=</span><span class="s1">&#39;subtype&#39;</span><span class="p">,</span>
<span class="n">val_fraction</span><span class="o">=</span><span class="mf">0.3</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Read more about <a class="reference internal" href="../datasets_and_val/#datasets-and-validation"><span class="std std-ref">Dataset management</span></a>.</p>
</section>
</section>
<section id="configuring-models">
<h2>Configuring models<a class="headerlink" href="#configuring-models" title="Permalink to this heading"></a></h2>
<p>Neural network models are prepared for training with <a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.ModelParams"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.ModelParams</span></code></a>, through which we define the model architecture, loss, and hyperparameters. Dozens of architectures are available in both the Tensorflow and PyTorch backends, and both neural network <a class="reference internal" href="../tutorial3/#tutorial3"><span class="std std-ref">architectures</span></a> and <a class="reference internal" href="../training/#custom-loss"><span class="std std-ref">loss</span></a> functions can be customized. In this example, we will use the included Xception network.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Prepare a model and hyperparameters.</span>
<span class="n">params</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">ModelParams</span><span class="p">(</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span>
<span class="n">tile_um</span><span class="o">=</span><span class="s1">&#39;10x&#39;</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;xception&#39;</span><span class="p">,</span>
<span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.0001</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Read more about <a class="reference internal" href="../training/#training"><span class="std std-ref">hyperparameter optimization in Slideflow</span></a>.</p>
</section>
<section id="training-a-model">
<h2>Training a model<a class="headerlink" href="#training-a-model" title="Permalink to this heading"></a></h2>
<p>Models can be trained from these hyperparameter configurations using <code class="xref py py-meth docutils literal notranslate"><span class="pre">Project.train()</span></code>. Models can be trained to categorical, multi-categorical, continuous, or time-series outcomes, and the training process is <a class="reference internal" href="../training/#training"><span class="std std-ref">highly configurable</span></a>. In this case, we are training a binary categorization model to predict the outcome <code class="docutils literal notranslate"><span class="pre">'subtype'</span></code>, and we will distribute training across multiple GPUs.</p>
<p>By default, Slideflow will train/validate on the full dataset using k-fold cross-validation, but validation settings <a class="reference internal" href="../datasets_and_val/#validation-planning"><span class="std std-ref">can be customized</span></a>. If you would like to restrict training to only a subset of your data - for example, to leave a held-out test set untouched - you can manually specify a dataset for training. In this case, we will train on <code class="docutils literal notranslate"><span class="pre">train_dataset</span></code>, and allow Slideflow to further split this into training and validation using three-fold cross-validation.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Train a model from a set of hyperparameters.</span>
<span class="n">results</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">train</span><span class="p">(</span>
<span class="s1">&#39;subtype&#39;</span><span class="p">,</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">train_dataset</span><span class="p">,</span>
<span class="n">params</span><span class="o">=</span><span class="n">params</span><span class="p">,</span>
<span class="n">val_strategy</span><span class="o">=</span><span class="s1">&#39;k-fold&#39;</span><span class="p">,</span>
<span class="n">val_k_fold</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">multi_gpu</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Models and training results will be saved in the project <code class="docutils literal notranslate"><span class="pre">models/</span></code> folder.</p>
<p>Read more about <a class="reference internal" href="../training/#training"><span class="std std-ref">training a model</span></a>.</p>
</section>
<section id="evaluating-a-trained-model">
<h2>Evaluating a trained model<a class="headerlink" href="#evaluating-a-trained-model" title="Permalink to this heading"></a></h2>
<p>After training, you can test model performance on a held-out test dataset with <code class="xref py py-meth docutils literal notranslate"><span class="pre">Project.evaluate()</span></code>, or generate predictions without evaluation (when ground-truth labels are not available) with <code class="xref py py-meth docutils literal notranslate"><span class="pre">Project.predict()</span></code>. As with <code class="xref py py-meth docutils literal notranslate"><span class="pre">Project.train()</span></code>, we can specify a <a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Dataset</span></code></a> to evaluate.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Train a model from a set of hyperparameters.</span>
<span class="n">test_results</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;/path/to/trained_model_epoch1&#39;</span>
<span class="n">outcomes</span><span class="o">=</span><span class="s1">&#39;subtype&#39;</span><span class="p">,</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">test_dataset</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Read more about <a class="reference internal" href="../evaluation/#evaluation"><span class="std std-ref">model evaluation</span></a>.</p>
</section>
<section id="post-hoc-analysis">
<h2>Post-hoc analysis<a class="headerlink" href="#post-hoc-analysis" title="Permalink to this heading"></a></h2>
<p>Slideflow includes a number of analytical tools for working with trained models. Read more about <a class="reference internal" href="../evaluation/#evaluation"><span class="std std-ref">heatmaps</span></a>, <a class="reference internal" href="../stylegan/#stylegan"><span class="std std-ref">model explainability</span></a>, <a class="reference internal" href="../posthoc/#activations"><span class="std std-ref">analysis of layer activations</span></a>, and real-time inference in an interactive <a class="reference internal" href="../studio/#studio"><span class="std std-ref">whole-slide image reader</span></a>.</p>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../project_setup/" class="btn btn-neutral float-right" title="Setting up a Project" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../overview/" class="btn btn-neutral" title="Overview" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Quickstart</a><ul>
<li><a class="reference internal" href="#preparing-a-project">Preparing a project</a></li>
<li><a class="reference internal" href="#data-preparation">Data preparation</a><ul>
<li><a class="reference internal" href="#tile-extraction">Tile extraction</a></li>
<li><a class="reference internal" href="#held-out-test-sets">Held-out test sets</a></li>
</ul>
</li>
<li><a class="reference internal" href="#configuring-models">Configuring models</a></li>
<li><a class="reference internal" href="#training-a-model">Training a model</a></li>
<li><a class="reference internal" href="#evaluating-a-trained-model">Evaluating a trained model</a></li>
<li><a class="reference internal" href="#post-hoc-analysis">Post-hoc analysis</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>