[78ef36]: / docs / posthoc / index.html

Download this file

638 lines (478 with data), 48.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Layer Activations &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Uncertainty Quantification" href="../uq/" />
<link rel="prev" title="Evaluation" href="../evaluation/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>Layer Activations</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/posthoc.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="layer-activations">
<span id="activations"></span><h1>Layer Activations<a class="headerlink" href="#layer-activations" title="Permalink to this heading"></a></h1>
<p>Investigating the latent space of a neural network can provide useful insights into the structure of your data and what models have learned during training. Slideflow provides several tools for post-hoc latent space analysis of trained neural networks, primarily by calculating activations at one or more neural network layers for all images in a dataset. In the next sections, we will take a look at how these layer activations can be calculated for downstream analysis and provide examples of analyses that can be performed.</p>
<section id="calculating-layer-activations">
<h2>Calculating Layer Activations<a class="headerlink" href="#calculating-layer-activations" title="Permalink to this heading"></a></h2>
<p>Activations at one or more layers of a trained network can be calculated with <a class="reference internal" href="../model/#slideflow.model.Features" title="slideflow.model.Features"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.model.Features</span></code></a> and <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures" title="slideflow.DatasetFeatures"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures</span></code></a>. The former provides an interface for calculating layer activations for a batch of images, and the latter supervises calculations across an entire dataset.</p>
<section id="batch-of-images">
<h3>Batch of images<a class="headerlink" href="#batch-of-images" title="Permalink to this heading"></a></h3>
<p><a class="reference internal" href="../model/#slideflow.model.Features" title="slideflow.model.Features"><code class="xref py py-class docutils literal notranslate"><span class="pre">Features</span></code></a> provides an interface for calculating layer activations and predictions on a batch of images. The following arguments are available:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">path</span></code>: Path to model, from which layer activations are calculated. Required.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">layers</span></code>: Layer(s) at which to calculate activations.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">include_preds</span></code>: Also return the final network output (predictions)</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">pooling</span></code>: Apply pooling to layer activations, to reduce dimensionality to one dimension.</p></li>
</ul>
<p>If <code class="docutils literal notranslate"><span class="pre">layers</span></code> is not supplied, activations at the post-convolutional layer will be calculated by default.</p>
<p>Once initialized, the resulting object can be called on a batch of images and will return the layer activations for all images in the batch. For example, to calculate activations at the <code class="docutils literal notranslate"><span class="pre">sep_conv_3</span></code> layer of a model while looping through a dataset:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="n">sepconv3</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">Features</span><span class="p">(</span><span class="s1">&#39;model/path&#39;</span><span class="p">,</span> <span class="n">layer</span><span class="o">=</span><span class="s1">&#39;sep_conv_3&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">img_batch</span> <span class="ow">in</span> <span class="n">dataset</span><span class="p">:</span>
<span class="n">postconv_activations</span> <span class="o">=</span> <span class="n">sepconv3</span><span class="p">(</span><span class="n">img_batch</span><span class="p">)</span>
</pre></div>
</div>
<p>If <code class="docutils literal notranslate"><span class="pre">layer</span></code> is a list of layer names, activations at each layer will be calculated and concatenated. If <code class="docutils literal notranslate"><span class="pre">include_preds</span></code> is <code class="docutils literal notranslate"><span class="pre">True</span></code>, the interface will also return the final predictions:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">sepconv3_and_preds</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">Features</span><span class="p">(</span><span class="o">...</span><span class="p">,</span> <span class="n">include_preds</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">layer_activations</span><span class="p">,</span> <span class="n">preds</span> <span class="o">=</span> <span class="n">sepconv3_and_preds</span><span class="p">(</span><span class="n">img_batch</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a class="reference internal" href="../model/#slideflow.model.Features" title="slideflow.model.Features"><code class="xref py py-class docutils literal notranslate"><span class="pre">Features</span></code></a> assumes that image batches already have any necessary preprocessing already applied, including standardization and stain normalization.</p>
</div>
<p>See the API documentation for <a class="reference internal" href="../model/#slideflow.model.Features" title="slideflow.model.Features"><code class="xref py py-class docutils literal notranslate"><span class="pre">Features</span></code></a> for more information.</p>
</section>
<section id="single-slide">
<h3>Single slide<a class="headerlink" href="#single-slide" title="Permalink to this heading"></a></h3>
<p>Layer activations can also be calculated across an entire slide using the same <a class="reference internal" href="../model/#slideflow.model.Features" title="slideflow.model.Features"><code class="xref py py-class docutils literal notranslate"><span class="pre">Features</span></code></a> interface. Calling the object on a <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.WSI</span></code> object will generate a grid of activations of size <code class="docutils literal notranslate"><span class="pre">(slide.grid.shape[0],</span> <span class="pre">slide.grid.shape[1],</span> <span class="pre">num_features)</span></code>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="n">slide</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">WSI</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">postconv</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">Features</span><span class="p">(</span><span class="s1">&#39;/model/path&#39;</span><span class="p">,</span> <span class="n">layers</span><span class="o">=</span><span class="s1">&#39;postconv&#39;</span><span class="p">)</span>
<span class="n">feature_grid</span> <span class="o">=</span> <span class="n">postconv</span><span class="p">(</span><span class="n">slide</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">feature_grid</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
</pre></div>
</div>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>(50, 45, 2048)
</pre></div>
</div>
</section>
<section id="entire-dataset">
<span id="dataset-features"></span><h3>Entire dataset<a class="headerlink" href="#entire-dataset" title="Permalink to this heading"></a></h3>
<p>Finally, layer activations can also be calculated for an entire dataset using <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures" title="slideflow.DatasetFeatures"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures</span></code></a>. Instancing the class supervises the calculation and caching of layer activations, which can then be used for downstream analysis. The project function <a class="reference internal" href="../project/#slideflow.Project.generate_features" title="slideflow.Project.generate_features"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.Project.generate_features()</span></code></a> creates and returns an instance of this class.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dts_ftrs</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span><span class="s1">&#39;/path/to/trained_model&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Alternatively, you can create an instance of this class directly:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">302</span><span class="p">)</span>
<span class="n">dts_ftrs</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">DatasetFeatures</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;/path/to/trained_model&#39;</span><span class="p">,</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">dataset</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Tile-level feature activations for each slide can be accessed directly from <code class="docutils literal notranslate"><span class="pre">DatasetFeatures.activations</span></code>, a dict mapping slide names to numpy arrays of shape <code class="docutils literal notranslate"><span class="pre">(num_tiles,</span> <span class="pre">num_features)</span></code>. Predictions are stored in <code class="docutils literal notranslate"><span class="pre">DatasetFeatures.predictions</span></code>, a dict mapping slide names to numpy arrays of shape <code class="docutils literal notranslate"><span class="pre">(num_tiles,</span> <span class="pre">num_classes)</span></code>. Tile-level location data (coordinates from which the tiles were taken from their respective source slides) is stored in <code class="docutils literal notranslate"><span class="pre">DatasetFeatures.locations</span></code>, a dict mapping slide names to numpy arrays of shape <code class="docutils literal notranslate"><span class="pre">(num_tiles,</span> <span class="pre">2)</span></code> (<code class="docutils literal notranslate"><span class="pre">x</span></code>, <code class="docutils literal notranslate"><span class="pre">y</span></code>).</p>
<p>Activations can be exported to a Pandas DataFrame with <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures.to_df" title="slideflow.DatasetFeatures.to_df"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures.to_df()</span></code></a> or exported into PyTorch format with <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures.to_torch" title="slideflow.DatasetFeatures.to_torch"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures.to_torch()</span></code></a>. See <a class="reference internal" href="../features/#features"><span class="std std-ref">Generating Features</span></a> for more information about generating and exporting features for MIL models.</p>
<p>Read the API documentation for <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures" title="slideflow.DatasetFeatures"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures</span></code></a> for more information.</p>
</section>
</section>
<section id="mapping-activations">
<span id="slidemap"></span><h2>Mapping Activations<a class="headerlink" href="#mapping-activations" title="Permalink to this heading"></a></h2>
<p>Layer activations across a dataset can be dimensionality reduced with UMAP and plotted for visualization using <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures.map_activations" title="slideflow.DatasetFeatures.map_activations"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures.map_activations()</span></code></a>. This function returns an instance of <a class="reference internal" href="../slidemap/#slideflow.SlideMap" title="slideflow.SlideMap"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.SlideMap</span></code></a>, a class that provides easy access to labeling and plotting.</p>
<p>The below example calculates layer activations at the neural network layer <code class="docutils literal notranslate"><span class="pre">sep_conv_3</span></code> for an entire dataset, and then reduces the activations into two dimensions for easy visualization using UMAP. Any valid <a class="reference external" href="https://umap-learn.readthedocs.io/en/latest/parameters.html">UMAP parameters</a> can be passed via keyword argument.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dts_ftrs</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;/path/to/trained_model&#39;</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="s1">&#39;sep_conv_3&#39;</span>
<span class="p">)</span>
<span class="n">slide_map</span> <span class="o">=</span> <span class="n">dts_ftrs</span><span class="o">.</span><span class="n">map_activations</span><span class="p">(</span>
<span class="n">n_neighbors</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="c1"># UMAP parameter</span>
<span class="n">min_dist</span><span class="o">=</span><span class="mf">0.2</span> <span class="c1"># UMAP parameter</span>
<span class="p">)</span>
</pre></div>
</div>
<p>We can then plot the activations with <a class="reference internal" href="../slidemap/#slideflow.SlideMap.plot" title="slideflow.SlideMap.plot"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.SlideMap.plot()</span></code></a>. All keyword arguments are passed to the <a class="reference external" href="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html">matplotlib scatter</a> function.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="n">slide_map</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">s</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
<p>We can add labels to our plot by first passing a dictionary with slide labels to the function <a class="reference internal" href="../slidemap/#slideflow.SlideMap.label_by_slide" title="slideflow.SlideMap.label_by_slide"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.SlideMap.label_by_slide()</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Get a dictionary mapping slide names to category labels</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="s1">&#39;10x&#39;</span><span class="p">)</span>
<span class="n">labels</span><span class="p">,</span> <span class="n">unique_labels</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">labels</span><span class="p">(</span><span class="s1">&#39;subtype&#39;</span><span class="p">,</span> <span class="nb">format</span><span class="o">=</span><span class="s1">&#39;name&#39;</span><span class="p">)</span>
<span class="c1"># Assign the labels to the slide map, then plot</span>
<span class="n">slide_map</span><span class="o">.</span><span class="n">label_by_slide</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span>
<span class="n">slide_map</span><span class="o">.</span><span class="n">plot</span><span class="p">()</span>
</pre></div>
</div>
<img alt="../_images/umap_example.png" src="../_images/umap_example.png" />
<div class="line-block">
<div class="line"><br /></div>
</div>
<p>Finally, we can use <code class="xref py py-meth docutils literal notranslate"><span class="pre">SlideMap.umap_transform()</span></code> to project new data into two dimensions using the previously fit UMAP.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="c1"># Create a SlideMap using layer activations reduced with UMAP</span>
<span class="n">dts_ftrs</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;/path/to/trained_model&#39;</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="s1">&#39;sep_conv_3&#39;</span>
<span class="p">)</span>
<span class="n">slide_map</span> <span class="o">=</span> <span class="n">dts_ftrs</span><span class="o">.</span><span class="n">map_activations</span><span class="p">()</span>
<span class="c1"># Load some dummy data.</span>
<span class="c1"># Second dimension must match size of activation vector.</span>
<span class="n">dummy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">((</span><span class="mi">100</span><span class="p">,</span> <span class="mi">1024</span><span class="p">))</span>
<span class="c1"># Transform the data using the already-fit UMAP.</span>
<span class="n">transformed</span> <span class="o">=</span> <span class="n">slide_map</span><span class="o">.</span><span class="n">umap_transform</span><span class="p">(</span><span class="n">dummy</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">transformed</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
</pre></div>
</div>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>(100, 2)
</pre></div>
</div>
<p>Read more about additional <a class="reference internal" href="../slidemap/#slideflow.SlideMap" title="slideflow.SlideMap"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.SlideMap</span></code></a> functions, including saving, loading, and clustering, in the linked API documentation.</p>
</section>
<section id="mosaic-maps">
<span id="mosaic-map"></span><h2>Mosaic Maps<a class="headerlink" href="#mosaic-maps" title="Permalink to this heading"></a></h2>
<p>Mosaic maps provide a tool for visualizing the distribution of histologic image features in a dataset through analysis of neural network layer activations. Similar to <a class="reference external" href="https://distill.pub/2019/activation-atlas/">activation atlases</a>, a mosaic map is generated by first calculating layer activations for a dataset, dimensionality reducing these activations with <a class="reference external" href="https://joss.theoj.org/papers/10.21105/joss.00861">UMAP</a>, and then overlaying corresponding images in a grid-wise fashion.</p>
<img alt="../_images/mosaic_example.png" src="../_images/mosaic_example.png" />
<div class="line-block">
<div class="line"><br /></div>
</div>
<p>In the previous sections, we reviewed how to calculate layer activations across a dataset, and then dimensionality reduce these activations into two dimensions using UMAP. <a class="reference internal" href="../mosaic/#slideflow.Mosaic" title="slideflow.Mosaic"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Mosaic</span></code></a> provides a tool for converting these activation maps into a grid of image tiles plotted according to their associated activation vectors.</p>
<section id="quickstart">
<h3>Quickstart<a class="headerlink" href="#quickstart" title="Permalink to this heading"></a></h3>
<p>The fastest way to build a mosaic map is using <a class="reference internal" href="../project/#slideflow.Project.generate_mosaic" title="slideflow.Project.generate_mosaic"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Project.generate_mosaic</span></code></a>, which requires a <code class="docutils literal notranslate"><span class="pre">DatasetFeatures</span></code> object as its only mandatory argument and returns an instance of <a class="reference internal" href="../mosaic/#slideflow.Mosaic" title="slideflow.Mosaic"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Mosaic</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dts_ftrs</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span><span class="s1">&#39;/path/to/trained_model&#39;</span><span class="p">,</span> <span class="n">layers</span><span class="o">=</span><span class="s1">&#39;postconv&#39;</span><span class="p">)</span>
<span class="n">mosaic</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_mosaic</span><span class="p">(</span><span class="n">dts_ftrs</span><span class="p">)</span>
<span class="n">mosaic</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;mosaic.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>When created with this interface, the underlying <a class="reference internal" href="../slidemap/#slideflow.SlideMap" title="slideflow.SlideMap"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.SlideMap</span></code></a> object used to create the mosaic map is accessible via <code class="docutils literal notranslate"><span class="pre">slideflow.Mosaic.slide_map</span></code>. You could, for example, use <a class="reference internal" href="../slidemap/#slideflow.SlideMap.save" title="slideflow.SlideMap.save"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.SlideMap.save()</span></code></a> to save the UMAP plot:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">mosiac</span><span class="o">.</span><span class="n">slide_map</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;umap.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="from-a-slidemap">
<h3>From a SlideMap<a class="headerlink" href="#from-a-slidemap" title="Permalink to this heading"></a></h3>
<p>Any <code class="docutils literal notranslate"><span class="pre">SlideMap</span></code> can be converted to a mosaic map with <code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.SlideMap.generate_mosaic()</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">ftrs</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">generate_features</span><span class="p">(</span><span class="s1">&#39;/path/to/model&#39;</span><span class="p">)</span>
<span class="n">slide_map</span> <span class="o">=</span> <span class="n">ftrs</span><span class="o">.</span><span class="n">map_activations</span><span class="p">()</span>
<span class="n">mosaic</span> <span class="o">=</span> <span class="n">slide_map</span><span class="o">.</span><span class="n">generate_mosaic</span><span class="p">()</span>
<span class="n">mosaic</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;mosaic.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="manual-creation">
<h3>Manual creation<a class="headerlink" href="#manual-creation" title="Permalink to this heading"></a></h3>
<p>Mosaic maps can be flexibly created with <a class="reference internal" href="../mosaic/#slideflow.Mosaic" title="slideflow.Mosaic"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Mosaic</span></code></a>, requiring two components: a set of images and corresponding coordinates. Images and coordinates can either be manually provided, or the mosaic can dynamically read images from TFRecords (as is done with <code class="xref py py-meth docutils literal notranslate"><span class="pre">Project.generate_mosaic()</span></code>).</p>
<p>The first argument of <a class="reference internal" href="../mosaic/#slideflow.Mosaic" title="slideflow.Mosaic"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Mosaic</span></code></a> provides the images, and may be either of the following:</p>
<ul class="simple">
<li><p>A list or array of images (np.ndarray, HxWxC)</p></li>
<li><p>A list of tuples, containing <code class="docutils literal notranslate"><span class="pre">(slide_name,</span> <span class="pre">tfrecord_index)</span></code></p></li>
</ul>
<p>The second argument provides the coordinates:</p>
<ul class="simple">
<li><p>A list or array of (x, y) coordinates for each image</p></li>
</ul>
<p>For example, to create a mosaic map from a list of images and coordinates:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Example data (images are HxWxC, np.ndarray)</span>
<span class="n">images</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">(</span><span class="o">...</span><span class="p">),</span> <span class="o">...</span><span class="p">]</span>
<span class="n">coords</span> <span class="o">=</span> <span class="p">[(</span><span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.9</span><span class="p">),</span> <span class="o">...</span><span class="p">]</span>
<span class="c1"># Generate the mosaic</span>
<span class="n">mosaic</span> <span class="o">=</span> <span class="n">Mosaic</span><span class="p">(</span><span class="n">images</span><span class="p">,</span> <span class="n">coordinates</span><span class="p">)</span>
<span class="n">mosaic</span><span class="o">.</span><span class="n">plot</span><span class="p">()</span>
</pre></div>
</div>
<p>You can also generate a mosaic map where the images are tuples of <cite>(tfrecord, tfrecord_index)</cite>. In this case, the mosaic map will dynamically read images from TFRecords during plotting.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Example data</span>
<span class="n">tfrecords</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;/path/to/tfrecord`.tfrecords&#39;</span><span class="p">,</span> <span class="o">...</span><span class="p">]</span>
<span class="n">idx</span> <span class="o">=</span> <span class="p">[</span><span class="mi">253</span><span class="p">,</span> <span class="mi">112</span><span class="p">,</span> <span class="o">...</span><span class="p">]</span>
<span class="n">coords</span> <span class="o">=</span> <span class="p">[(</span><span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.9</span><span class="p">),</span> <span class="o">...</span><span class="p">]</span>
<span class="c1"># Generate mosaic map</span>
<span class="n">mosaic</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Mosaic</span><span class="p">(</span>
<span class="n">images</span><span class="o">=</span><span class="p">[(</span><span class="n">tfr</span><span class="p">,</span> <span class="n">idx</span><span class="p">)</span> <span class="k">for</span> <span class="n">tfr</span><span class="p">,</span> <span class="n">idx</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">tfrecords</span><span class="p">,</span> <span class="n">idx</span><span class="p">)],</span>
<span class="n">coords</span><span class="o">=</span><span class="n">coords</span>
<span class="p">)</span>
</pre></div>
</div>
<p>There are several additional arguments that can be used to customize the mosaic map plotting. Read the linked API documentation for <a class="reference internal" href="../mosaic/#slideflow.Mosaic" title="slideflow.Mosaic"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Mosaic</span></code></a> for more information.</p>
</section>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../uq/" class="btn btn-neutral float-right" title="Uncertainty Quantification" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../evaluation/" class="btn btn-neutral" title="Evaluation" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Layer Activations</a><ul>
<li><a class="reference internal" href="#calculating-layer-activations">Calculating Layer Activations</a><ul>
<li><a class="reference internal" href="#batch-of-images">Batch of images</a></li>
<li><a class="reference internal" href="#single-slide">Single slide</a></li>
<li><a class="reference internal" href="#entire-dataset">Entire dataset</a></li>
</ul>
</li>
<li><a class="reference internal" href="#mapping-activations">Mapping Activations</a></li>
<li><a class="reference internal" href="#mosaic-maps">Mosaic Maps</a><ul>
<li><a class="reference internal" href="#quickstart">Quickstart</a></li>
<li><a class="reference internal" href="#from-a-slidemap">From a SlideMap</a></li>
<li><a class="reference internal" href="#manual-creation">Manual creation</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>