[78ef36]: / docs / model / index.html

Download this file

1253 lines (1076 with data), 164.2 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>slideflow.model &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="slideflow.model.tensorflow" href="../model_tensorflow/" />
<link rel="prev" title="slideflow.mil" href="../mil_module/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>slideflow.model</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/model.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="slideflow-model">
<h1>slideflow.model<a class="headerlink" href="#slideflow-model" title="Permalink to this heading"></a></h1>
<p>This module provides the <code class="xref py py-class docutils literal notranslate"><span class="pre">ModelParams</span></code> class to organize model and training
parameters/hyperparameters and assist with model building, as well as the <a class="reference internal" href="#slideflow.model.Trainer" title="slideflow.model.Trainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">Trainer</span></code></a> class that
executes model training and evaluation. <a class="reference internal" href="#slideflow.model.RegressionTrainer" title="slideflow.model.RegressionTrainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">RegressionTrainer</span></code></a> and <a class="reference internal" href="#slideflow.model.SurvivalTrainer" title="slideflow.model.SurvivalTrainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">SurvivalTrainer</span></code></a>
are extensions of this class, supporting regression and Cox Proportional Hazards outcomes, respectively. The function
<a class="reference internal" href="#slideflow.model.build_trainer" title="slideflow.model.build_trainer"><code class="xref py py-func docutils literal notranslate"><span class="pre">build_trainer()</span></code></a> can choose and return the correct model instance based on the provided
hyperparameters.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>In order to support both Tensorflow and PyTorch backends, the <code class="xref py py-mod docutils literal notranslate"><span class="pre">slideflow.model</span></code> module will import either
<code class="xref py py-mod docutils literal notranslate"><span class="pre">slideflow.model.tensorflow</span></code> or <code class="xref py py-mod docutils literal notranslate"><span class="pre">slideflow.model.torch</span></code> according to the currently active backend,
indicated by the environmental variable <code class="docutils literal notranslate"><span class="pre">SF_BACKEND</span></code>.</p>
</div>
<p>See <a class="reference internal" href="../training/#training"><span class="std std-ref">Training</span></a> for a detailed look at how to train models.</p>
<section id="trainer">
<h2>Trainer<a class="headerlink" href="#trainer" title="Permalink to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="slideflow.model.Trainer">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Trainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">hp</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.model.torch.ModelParams"><span class="pre">ModelParams</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">outdir</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">slide_input</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'Trainer'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">feature_sizes</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">feature_names</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">outcome_names</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mixed_precision</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">allow_tf32</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">config</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">use_neptune</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">neptune_api</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">neptune_workspace</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">load_method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'weights'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">custom_objects</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">transform</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Callable" title="(in Python v3.12)"><span class="pre">Callable</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Callable" title="(in Python v3.12)"><span class="pre">Callable</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pin_memory</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">num_workers</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">chunk_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">8</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/model/torch/#Trainer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.Trainer" title="Permalink to this definition"></a></dt>
<dd><p>Base trainer class containing functionality for model building, input
processing, training, and evaluation.</p>
<p>This base class requires categorical outcome(s). Additional outcome types
are supported by <a class="reference internal" href="#slideflow.model.RegressionTrainer" title="slideflow.model.RegressionTrainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.model.RegressionTrainer</span></code></a> and
<a class="reference internal" href="#slideflow.model.SurvivalTrainer" title="slideflow.model.SurvivalTrainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.model.SurvivalTrainer</span></code></a>.</p>
<p>Slide-level (e.g. clinical) features can be used as additional model input
by providing slide labels in the slide annotations dictionary, under
the key ‘input’.</p>
<p>Sets base configuration, preparing model inputs and outputs.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>hp</strong> (<a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.ModelParams"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.ModelParams</span></code></a>) – ModelParams object.</p></li>
<li><p><strong>outdir</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Destination for event logs and checkpoints.</p></li>
<li><p><strong>labels</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a>) – Dict mapping slide names to outcome labels (int or
float format).</p></li>
<li><p><strong>slide_input</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a>) – Dict mapping slide names to additional
slide-level input, concatenated after post-conv.</p></li>
<li><p><strong>name</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Optional name describing the model, used for
model saving. Defaults to None.</p></li>
<li><p><strong>feature_sizes</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – List of sizes of input features.
Required if providing additional input features as model input.</p></li>
<li><p><strong>feature_names</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – List of names for input features.
Used when permuting feature importance.</p></li>
<li><p><strong>outcome_names</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – Name of each outcome. Defaults to
“Outcome {X}” for each outcome.</p></li>
<li><p><strong>mixed_precision</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use FP16 mixed precision (rather
than FP32). Defaults to True.</p></li>
<li><p><strong>allow_tf32</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Allow internal use of Tensorfloat-32 format.
Defaults to False.</p></li>
<li><p><strong>config</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>optional</em>) – Training configuration dictionary, used
for logging and image format verification. Defaults to None.</p></li>
<li><p><strong>use_neptune</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use Neptune API logging.
Defaults to False</p></li>
<li><p><strong>neptune_api</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Neptune API token, used for logging.
Defaults to None.</p></li>
<li><p><strong>neptune_workspace</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Neptune workspace.
Defaults to None.</p></li>
<li><p><strong>load_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Loading method to use when reading model.
This argument is ignored in the PyTorch backend, as all models
are loaded by first building the model with hyperparameters
detected in <code class="docutils literal notranslate"><span class="pre">params.json</span></code>, then loading weights with
<code class="docutils literal notranslate"><span class="pre">torch.nn.Module.load_state_dict()</span></code>. Defaults to
‘full’ (ignored).</p></li>
<li><p><strong>transform</strong> (<em>callable</em><em> or </em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>optional</em>) – Optional transform to
apply to input images. If dict, must have the keys ‘train’
and/or ‘val’, mapping to callables that takes a single
image Tensor as input and returns a single image Tensor.
If None, no transform is applied. If a single callable is
provided, it will be applied to both training and validation
data. If a dict is provided, the ‘train’ transform will be
applied to training data and the ‘val’ transform will be
applied to validation data. If a dict is provided and either
‘train’ or ‘val’ is None, no transform will be applied to
that data. Defaults to None.</p></li>
<li><p><strong>pin_memory</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Set the <code class="docutils literal notranslate"><span class="pre">pin_memory</span></code> attribute for dataloaders.
Defaults to True.</p></li>
<li><p><strong>num_workers</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Set the number of workers for dataloaders.
Defaults to 4.</p></li>
<li><p><strong>chunk_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Set the chunk size for TFRecord reading.
Defaults to 8.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.Trainer.load">
<span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">training</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span></span><a class="headerlink" href="#slideflow.model.Trainer.load" title="Permalink to this definition"></a></dt>
<dd><p>Loads a state dict at the given model location. Requires that the
Trainer’s hyperparameters (Trainer.hp)
match the hyperparameters of the model to be loaded.</p>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.Trainer.evaluate">
<span class="sig-name descname"><span class="pre">evaluate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.dataset.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_predictions</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'parquet'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">reduce_method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Callable" title="(in Python v3.12)"><span class="pre">Callable</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'average'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">norm_fit</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">ndarray</span><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">uq</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'auto'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">from_wsi</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">roi_method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'auto'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#slideflow.model.Trainer.evaluate" title="Permalink to this definition"></a></dt>
<dd><p>Evaluate model, saving metrics and predictions.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> (<a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.dataset.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.dataset.Dataset</span></code></a>) – Dataset to evaluate.</p></li>
<li><p><strong>batch_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Evaluation batch size. Defaults to the
same as training (per self.hp)</p></li>
<li><p><strong>save_predictions</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em> or </em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Save tile, slide, and
patient-level predictions at each evaluation. May be ‘csv’,
‘feather’, or ‘parquet’. If False, will not save predictions.
Defaults to ‘parquet’.</p></li>
<li><p><strong>reduce_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Reduction method for calculating
slide-level and patient-level predictions for categorical
outcomes. Options include ‘average’, ‘mean’, ‘proportion’,
‘median’, ‘sum’, ‘min’, ‘max’, or a callable function.
‘average’ and ‘mean’ are synonymous, with both options kept
for backwards compatibility. If ‘average’ or ‘mean’, will
reduce with average of each logit across tiles. If
‘proportion’, will convert tile predictions into onehot encoding
then reduce by averaging these onehot values. For all other
values, will reduce with the specified function, applied via
the pandas <code class="docutils literal notranslate"><span class="pre">DataFrame.agg()</span></code> function. Defaults to ‘average’.</p></li>
<li><p><strong>norm_fit</strong> (<em>Dict</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>np.ndarray</em><em>]</em>) – Normalizer fit, mapping fit
parameters (e.g. target_means, target_stds) to values
(np.ndarray). If not provided, will fit normalizer using
model params (if applicable). Defaults to None.</p></li>
<li><p><strong>uq</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em> or </em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Enable UQ estimation (for
applicable models). Defaults to ‘auto’.</p></li>
<li><p><strong>from_wsi</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Generate predictions from tiles dynamically
extracted from whole-slide images, rather than TFRecords.
Defaults to False (use TFRecords).</p></li>
<li><p><strong>roi_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – ROI method to use if from_wsi=True (ignored if
from_wsi=False). Either ‘inside’, ‘outside’, ‘auto’, ‘ignore’.
If ‘inside’ or ‘outside’, will extract tiles in/out of an ROI,
and raise errors.MissingROIError if an ROI is not available.
If ‘auto’, will extract tiles inside an ROI if available,
and across the whole-slide if no ROI is found.
If ‘ignore’, will extract tiles across the whole-slide
regardless of whether an ROI is available.
Defaults to ‘auto’.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>Dictionary of evaluation metrics.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.Trainer.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.dataset.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">norm_fit</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">ndarray</span><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">format</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'parquet'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">from_wsi</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">roi_method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'auto'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">reduce_method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Callable" title="(in Python v3.12)"><span class="pre">Callable</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'average'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">DataFrame</span><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#slideflow.model.Trainer.predict" title="Permalink to this definition"></a></dt>
<dd><p>Perform inference on a model, saving predictions.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> (<a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.dataset.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.dataset.Dataset</span></code></a>) – Dataset containing
TFRecords to evaluate.</p></li>
<li><p><strong>batch_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Evaluation batch size. Defaults to the
same as training (per self.hp)</p></li>
<li><p><strong>norm_fit</strong> (<em>Dict</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>np.ndarray</em><em>]</em>) – Normalizer fit, mapping fit
parameters (e.g. target_means, target_stds) to values
(np.ndarray). If not provided, will fit normalizer using
model params (if applicable). Defaults to None.</p></li>
<li><p><strong>format</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Format in which to save predictions. Either
‘csv’, ‘feather’, or ‘parquet’. Defaults to ‘parquet’.</p></li>
<li><p><strong>from_wsi</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Generate predictions from tiles dynamically
extracted from whole-slide images, rather than TFRecords.
Defaults to False (use TFRecords).</p></li>
<li><p><strong>roi_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – ROI method to use if from_wsi=True (ignored if
from_wsi=False). Either ‘inside’, ‘outside’, ‘auto’, ‘ignore’.
If ‘inside’ or ‘outside’, will extract tiles in/out of an ROI,
and raise errors.MissingROIError if an ROI is not available.
If ‘auto’, will extract tiles inside an ROI if available,
and across the whole-slide if no ROI is found.
If ‘ignore’, will extract tiles across the whole-slide
regardless of whether an ROI is available.
Defaults to ‘auto’.</p></li>
<li><p><strong>reduce_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Reduction method for calculating
slide-level and patient-level predictions for categorical
outcomes. Options include ‘average’, ‘mean’, ‘proportion’,
‘median’, ‘sum’, ‘min’, ‘max’, or a callable function.
‘average’ and ‘mean’ are synonymous, with both options kept
for backwards compatibility. If ‘average’ or ‘mean’, will
reduce with average of each logit across tiles. If
‘proportion’, will convert tile predictions into onehot encoding
then reduce by averaging these onehot values. For all other
values, will reduce with the specified function, applied via
the pandas <code class="docutils literal notranslate"><span class="pre">DataFrame.agg()</span></code> function. Defaults to ‘average’.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>Dictionary with keys ‘tile’, ‘slide’, and
‘patient’, and values containing DataFrames with tile-, slide-,
and patient-level predictions.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Dict[<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)">str</a>, pd.DataFrame]</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.Trainer.train">
<span class="sig-name descname"><span class="pre">train</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_dts</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.dataset.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_dts</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.dataset.Dataset"><span class="pre">Dataset</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">log_frequency</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">20</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">validate_on_batch</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">validation_batch_size</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">validation_steps</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">50</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">starting_epoch</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ema_observations</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">20</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ema_smoothing</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">use_tensorboard</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">steps_per_epoch_override</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_predictions</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'parquet'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resume_training</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pretrain</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'imagenet'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpoint</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save_checkpoints</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">multi_gpu</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">norm_fit</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><span class="pre">ndarray</span><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">reduce_method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Callable" title="(in Python v3.12)"><span class="pre">Callable</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'average'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">from_wsi</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">roi_method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'auto'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="headerlink" href="#slideflow.model.Trainer.train" title="Permalink to this definition"></a></dt>
<dd><p>Builds and trains a model from hyperparameters.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>train_dts</strong> (<a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.dataset.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.dataset.Dataset</span></code></a>) – Training dataset.</p></li>
<li><p><strong>val_dts</strong> (<a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.dataset.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.dataset.Dataset</span></code></a>) – Validation dataset.</p></li>
<li><p><strong>log_frequency</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – How frequent to update Tensorboard
logs, in batches. Defaults to 100.</p></li>
<li><p><strong>validate_on_batch</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Validation will be performed
every N batches. Defaults to 0.</p></li>
<li><p><strong>validation_batch_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Validation batch size.
Defaults to same as training (per self.hp).</p></li>
<li><p><strong>validation_steps</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Number of batches to use for each
instance of validation. Defaults to 200.</p></li>
<li><p><strong>starting_epoch</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Starts training at this epoch.
Defaults to 0.</p></li>
<li><p><strong>ema_observations</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Number of observations over which
to perform exponential moving average smoothing.
Defaults to 20.</p></li>
<li><p><strong>ema_smoothing</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Exponential average smoothing value.
Defaults to 2.</p></li>
<li><p><strong>use_tensoboard</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Enable tensorboard callbacks.
Defaults to False.</p></li>
<li><p><strong>steps_per_epoch_override</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Manually set the number
of steps per epoch. Defaults to None.</p></li>
<li><p><strong>save_predictions</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em> or </em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Save tile, slide, and
patient-level predictions at each evaluation. May be ‘csv’,
‘feather’, or ‘parquet’. If False, will not save predictions.
Defaults to ‘parquet’.</p></li>
<li><p><strong>save_model</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Save models when evaluating at
specified epochs. Defaults to False.</p></li>
<li><p><strong>resume_training</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Not applicable to PyTorch backend.
Included as argument for compatibility with Tensorflow backend.
Will raise NotImplementedError if supplied.</p></li>
<li><p><strong>pretrain</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Either ‘imagenet’ or path to Tensorflow
model from which to load weights. Defaults to ‘imagenet’.</p></li>
<li><p><strong>checkpoint</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Path to cp.ckpt from which to load
weights. Defaults to None.</p></li>
<li><p><strong>norm_fit</strong> (<em>Dict</em><em>[</em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>np.ndarray</em><em>]</em>) – Normalizer fit, mapping fit
parameters (e.g. target_means, target_stds) to values
(np.ndarray). If not provided, will fit normalizer using
model params (if applicable). Defaults to None.</p></li>
<li><p><strong>reduce_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Reduction method for calculating
slide-level and patient-level predictions for categorical
outcomes. Options include ‘average’, ‘mean’, ‘proportion’,
‘median’, ‘sum’, ‘min’, ‘max’, or a callable function.
‘average’ and ‘mean’ are synonymous, with both options kept
for backwards compatibility. If ‘average’ or ‘mean’, will
reduce with average of each logit across tiles. If
‘proportion’, will convert tile predictions into onehot encoding
then reduce by averaging these onehot values. For all other
values, will reduce with the specified function, applied via
the pandas <code class="docutils literal notranslate"><span class="pre">DataFrame.agg()</span></code> function. Defaults to ‘average’.</p></li>
<li><p><strong>seed</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Set numpy random seed. Defaults to 0.</p></li>
<li><p><strong>from_wsi</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Generate predictions from tiles dynamically
extracted from whole-slide images, rather than TFRecords.
Defaults to False (use TFRecords).</p></li>
<li><p><strong>roi_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – ROI method to use if from_wsi=True (ignored if
from_wsi=False). Either ‘inside’, ‘outside’, ‘auto’, ‘ignore’.
If ‘inside’ or ‘outside’, will extract tiles in/out of an ROI,
and raise errors.MissingROIError if an ROI is not available.
If ‘auto’, will extract tiles inside an ROI if available,
and across the whole-slide if no ROI is found.
If ‘ignore’, will extract tiles across the whole-slide
regardless of whether an ROI is available.
Defaults to ‘auto’.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>Nested dict containing metrics for each evaluated epoch.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Dict</p>
</dd>
</dl>
</dd></dl>
</section>
<section id="regressiontrainer">
<h2>RegressionTrainer<a class="headerlink" href="#regressiontrainer" title="Permalink to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="slideflow.model.RegressionTrainer">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">RegressionTrainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/model/torch/#RegressionTrainer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.RegressionTrainer" title="Permalink to this definition"></a></dt>
<dd><p>Extends the base <a class="reference internal" href="#slideflow.model.Trainer" title="slideflow.model.Trainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.model.Trainer</span></code></a> class to add support
for continuous outcomes. Requires that all outcomes be continuous, with appropriate
regression loss function. Uses R-squared as the evaluation metric, rather
than AUROC.</p>
<p>In this case, for the PyTorch backend, the continuous outcomes support is
already baked into the base Trainer class, so no additional modifications
are required. This class is written to inherit the Trainer class without
modification to maintain consistency with the Tensorflow backend.</p>
<p>Sets base configuration, preparing model inputs and outputs.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>hp</strong> (<a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.ModelParams"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.ModelParams</span></code></a>) – ModelParams object.</p></li>
<li><p><strong>outdir</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Destination for event logs and checkpoints.</p></li>
<li><p><strong>labels</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a>) – Dict mapping slide names to outcome labels (int or
float format).</p></li>
<li><p><strong>slide_input</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a>) – Dict mapping slide names to additional
slide-level input, concatenated after post-conv.</p></li>
<li><p><strong>name</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Optional name describing the model, used for
model saving. Defaults to None.</p></li>
<li><p><strong>feature_sizes</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – List of sizes of input features.
Required if providing additional input features as model input.</p></li>
<li><p><strong>feature_names</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – List of names for input features.
Used when permuting feature importance.</p></li>
<li><p><strong>outcome_names</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – Name of each outcome. Defaults to
“Outcome {X}” for each outcome.</p></li>
<li><p><strong>mixed_precision</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use FP16 mixed precision (rather
than FP32). Defaults to True.</p></li>
<li><p><strong>allow_tf32</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Allow internal use of Tensorfloat-32 format.
Defaults to False.</p></li>
<li><p><strong>config</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>optional</em>) – Training configuration dictionary, used
for logging and image format verification. Defaults to None.</p></li>
<li><p><strong>use_neptune</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use Neptune API logging.
Defaults to False</p></li>
<li><p><strong>neptune_api</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Neptune API token, used for logging.
Defaults to None.</p></li>
<li><p><strong>neptune_workspace</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Neptune workspace.
Defaults to None.</p></li>
<li><p><strong>load_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Loading method to use when reading model.
This argument is ignored in the PyTorch backend, as all models
are loaded by first building the model with hyperparameters
detected in <code class="docutils literal notranslate"><span class="pre">params.json</span></code>, then loading weights with
<code class="docutils literal notranslate"><span class="pre">torch.nn.Module.load_state_dict()</span></code>. Defaults to
‘full’ (ignored).</p></li>
<li><p><strong>transform</strong> (<em>callable</em><em> or </em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>optional</em>) – Optional transform to
apply to input images. If dict, must have the keys ‘train’
and/or ‘val’, mapping to callables that takes a single
image Tensor as input and returns a single image Tensor.
If None, no transform is applied. If a single callable is
provided, it will be applied to both training and validation
data. If a dict is provided, the ‘train’ transform will be
applied to training data and the ‘val’ transform will be
applied to validation data. If a dict is provided and either
‘train’ or ‘val’ is None, no transform will be applied to
that data. Defaults to None.</p></li>
<li><p><strong>pin_memory</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Set the <code class="docutils literal notranslate"><span class="pre">pin_memory</span></code> attribute for dataloaders.
Defaults to True.</p></li>
<li><p><strong>num_workers</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Set the number of workers for dataloaders.
Defaults to 4.</p></li>
<li><p><strong>chunk_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Set the chunk size for TFRecord reading.
Defaults to 8.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</section>
<section id="survivaltrainer">
<h2>SurvivalTrainer<a class="headerlink" href="#survivaltrainer" title="Permalink to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="slideflow.model.SurvivalTrainer">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">SurvivalTrainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/model/torch/#SurvivalTrainer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.SurvivalTrainer" title="Permalink to this definition"></a></dt>
<dd><p>Cox proportional hazards (CPH) models are not yet implemented, but are
planned for a future update.</p>
<p>Sets base configuration, preparing model inputs and outputs.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>hp</strong> (<a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.ModelParams"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.ModelParams</span></code></a>) – ModelParams object.</p></li>
<li><p><strong>outdir</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Destination for event logs and checkpoints.</p></li>
<li><p><strong>labels</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a>) – Dict mapping slide names to outcome labels (int or
float format).</p></li>
<li><p><strong>slide_input</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a>) – Dict mapping slide names to additional
slide-level input, concatenated after post-conv.</p></li>
<li><p><strong>name</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Optional name describing the model, used for
model saving. Defaults to None.</p></li>
<li><p><strong>feature_sizes</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – List of sizes of input features.
Required if providing additional input features as model input.</p></li>
<li><p><strong>feature_names</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – List of names for input features.
Used when permuting feature importance.</p></li>
<li><p><strong>outcome_names</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – Name of each outcome. Defaults to
“Outcome {X}” for each outcome.</p></li>
<li><p><strong>mixed_precision</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use FP16 mixed precision (rather
than FP32). Defaults to True.</p></li>
<li><p><strong>allow_tf32</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Allow internal use of Tensorfloat-32 format.
Defaults to False.</p></li>
<li><p><strong>config</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>optional</em>) – Training configuration dictionary, used
for logging and image format verification. Defaults to None.</p></li>
<li><p><strong>use_neptune</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use Neptune API logging.
Defaults to False</p></li>
<li><p><strong>neptune_api</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Neptune API token, used for logging.
Defaults to None.</p></li>
<li><p><strong>neptune_workspace</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Neptune workspace.
Defaults to None.</p></li>
<li><p><strong>load_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Loading method to use when reading model.
This argument is ignored in the PyTorch backend, as all models
are loaded by first building the model with hyperparameters
detected in <code class="docutils literal notranslate"><span class="pre">params.json</span></code>, then loading weights with
<code class="docutils literal notranslate"><span class="pre">torch.nn.Module.load_state_dict()</span></code>. Defaults to
‘full’ (ignored).</p></li>
<li><p><strong>transform</strong> (<em>callable</em><em> or </em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>optional</em>) – Optional transform to
apply to input images. If dict, must have the keys ‘train’
and/or ‘val’, mapping to callables that takes a single
image Tensor as input and returns a single image Tensor.
If None, no transform is applied. If a single callable is
provided, it will be applied to both training and validation
data. If a dict is provided, the ‘train’ transform will be
applied to training data and the ‘val’ transform will be
applied to validation data. If a dict is provided and either
‘train’ or ‘val’ is None, no transform will be applied to
that data. Defaults to None.</p></li>
<li><p><strong>pin_memory</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Set the <code class="docutils literal notranslate"><span class="pre">pin_memory</span></code> attribute for dataloaders.
Defaults to True.</p></li>
<li><p><strong>num_workers</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Set the number of workers for dataloaders.
Defaults to 4.</p></li>
<li><p><strong>chunk_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Set the chunk size for TFRecord reading.
Defaults to 8.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</section>
<section id="features">
<h2>Features<a class="headerlink" href="#features" title="Permalink to this heading"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="slideflow.model.Features">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Features</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">layers</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'postconv'</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">include_preds</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mixed_precision</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">channels_last</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">device</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">apply_softmax</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pooling</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">load_method</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'weights'</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/model/torch/#Features"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.Features" title="Permalink to this definition"></a></dt>
<dd><p>Interface for obtaining predictions and features from intermediate layer
activations from Slideflow models.</p>
<p>Use by calling on either a batch of images (returning outputs for a single
batch), or by calling on a <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.WSI</span></code> object, which will
generate an array of spatially-mapped activations matching the slide.</p>
<dl>
<dt>Examples</dt><dd><p><em>Calling on batch of images:</em></p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">interface</span> <span class="o">=</span> <span class="n">Features</span><span class="p">(</span><span class="s1">&#39;/model/path&#39;</span><span class="p">,</span> <span class="n">layers</span><span class="o">=</span><span class="s1">&#39;postconv&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">image_batch</span> <span class="ow">in</span> <span class="n">train_data</span><span class="p">:</span>
<span class="c1"># Return shape: (batch_size, num_features)</span>
<span class="n">batch_features</span> <span class="o">=</span> <span class="n">interface</span><span class="p">(</span><span class="n">image_batch</span><span class="p">)</span>
</pre></div>
</div>
<p><em>Calling on a slide:</em></p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">slide</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">slide</span><span class="o">.</span><span class="n">WSI</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">interface</span> <span class="o">=</span> <span class="n">Features</span><span class="p">(</span><span class="s1">&#39;/model/path&#39;</span><span class="p">,</span> <span class="n">layers</span><span class="o">=</span><span class="s1">&#39;postconv&#39;</span><span class="p">)</span>
<span class="c1"># Return shape:</span>
<span class="c1"># (slide.grid.shape[0], slide.grid.shape[1], num_features)</span>
<span class="n">activations_grid</span> <span class="o">=</span> <span class="n">interface</span><span class="p">(</span><span class="n">slide</span><span class="p">)</span>
</pre></div>
</div>
</dd>
</dl>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>When this interface is called on a batch of images, no image processing
or stain normalization will be performed, as it is assumed that
normalization will occur during data loader image processing. When the
interface is called on a <cite>slideflow.WSI</cite>, the normalization strategy
will be read from the model configuration file, and normalization will
be performed on image tiles extracted from the WSI. If this interface
was created from an existing model and there is no model configuration
file to read, a slideflow.norm.StainNormalizer object may be passed
during initialization via the argument <cite>wsi_normalizer</cite>.</p>
</div>
<p>Creates an activations interface from a saved slideflow model which
outputs feature activations at the designated layers.</p>
<p>Intermediate layers are returned in the order of layers.
predictions are returned last.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>path</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Path to saved Slideflow model.</p></li>
<li><p><strong>layers</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>(</em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>)</em><em>, </em><em>optional</em>) – Layers from which to generate
activations. The post-convolution activation layer is accessed
via ‘postconv’. Defaults to ‘postconv’.</p></li>
<li><p><strong>include_preds</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Include predictions in output. Will be
returned last. Defaults to False.</p></li>
<li><p><strong>mixed_precision</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use mixed precision.
Defaults to True.</p></li>
<li><p><strong>device</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">torch.device</span></code>, optional) – Device for model.
Defaults to torch.device(‘cuda’)</p></li>
<li><p><strong>apply_softmax</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Apply softmax transformation to model output.
Defaults to True for classification models, False for regression models.</p></li>
<li><p><strong>pooling</strong> (<em>Callable</em><em> or </em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – PyTorch pooling function to use
on feature layers. May be a string (‘avg’ or ‘max’) or a
callable PyTorch function.</p></li>
<li><p><strong>load_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Loading method to use when reading model.
This argument is ignored in the PyTorch backend, as all models
are loaded by first building the model with hyperparameters
detected in <code class="docutils literal notranslate"><span class="pre">params.json</span></code>, then loading weights with
<code class="docutils literal notranslate"><span class="pre">torch.nn.Module.load_state_dict()</span></code>. Defaults to
‘full’ (ignored).</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.Features.from_model">
<span class="sig-name descname"><span class="pre">from_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Module</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tile_px</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">layers</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'postconv'</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">include_preds</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mixed_precision</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">channels_last</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">wsi_normalizer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="../norm/#slideflow.norm.StainNormalizer" title="slideflow.norm.StainNormalizer"><span class="pre">StainNormalizer</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">apply_softmax</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pooling</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#slideflow.model.Features.from_model" title="Permalink to this definition"></a></dt>
<dd><p>Creates an activations interface from a loaded slideflow model which
outputs feature activations at the designated layers.</p>
<p>Intermediate layers are returned in the order of layers.
predictions are returned last.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>model</strong> (<code class="xref py py-class docutils literal notranslate"><span class="pre">tensorflow.keras.models.Model</span></code>) – Loaded model.</p></li>
<li><p><strong>tile_px</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Width/height of input image size.</p></li>
<li><p><strong>layers</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>(</em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>)</em><em>, </em><em>optional</em>) – Layers from which to generate
activations. The post-convolution activation layer is accessed
via ‘postconv’. Defaults to ‘postconv’.</p></li>
<li><p><strong>include_preds</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Include predictions in output. Will be
returned last. Defaults to False.</p></li>
<li><p><strong>mixed_precision</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use mixed precision.
Defaults to True.</p></li>
<li><p><strong>wsi_normalizer</strong> (<a class="reference internal" href="../norm/#slideflow.norm.StainNormalizer" title="slideflow.norm.StainNormalizer"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.norm.StainNormalizer</span></code></a>) – Stain
normalizer to use on whole-slide images. Is not used on
individual tile datasets via __call__. Defaults to None.</p></li>
<li><p><strong>apply_softmax</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Apply softmax transformation to model output.
Defaults to True.</p></li>
<li><p><strong>pooling</strong> (<em>Callable</em><em> or </em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – PyTorch pooling function to use
on feature layers. May be a string (‘avg’ or ‘max’) or a
callable PyTorch function.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.Features.__call__">
<span class="sig-name descname"><span class="pre">__call__</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">self</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inp</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><span class="pre">Tensor</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference internal" href="../slide/#slideflow.slide.WSI" title="slideflow.slide.wsi.WSI"><span class="pre">WSI</span></a></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">[</span></span><span class="pre">Tensor</span><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><span class="pre">ndarray</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span></span><a class="headerlink" href="#slideflow.model.Features.__call__" title="Permalink to this definition"></a></dt>
<dd><p>Process a given input and return activations and/or predictions. Expects
either a batch of images or a <a class="reference internal" href="../slide/#slideflow.slide.WSI" title="slideflow.slide.WSI"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.slide.WSI</span></code></a> object.</p>
<p>When calling on a <cite>WSI</cite> object, keyword arguments are passed to
<a class="reference internal" href="../slide/#slideflow.WSI.build_generator" title="slideflow.WSI.build_generator"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.WSI.build_generator()</span></code></a>.</p>
</dd></dl>
</section>
<section id="other-functions">
<h2>Other functions<a class="headerlink" href="#other-functions" title="Permalink to this heading"></a></h2>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.build_trainer">
<span class="sig-name descname"><span class="pre">build_trainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">hp</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.model.torch.ModelParams"><span class="pre">ModelParams</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">outdir</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#slideflow.model.Trainer" title="slideflow.model.torch.Trainer"><span class="pre">Trainer</span></a></span></span><a class="reference internal" href="../_modules/slideflow/model/#build_trainer"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.build_trainer" title="Permalink to this definition"></a></dt>
<dd><p>From the given <a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.ModelParams"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.ModelParams</span></code></a> object, returns
the appropriate instance of <a class="reference internal" href="#slideflow.model.Trainer" title="slideflow.model.Trainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.model.Trainer</span></code></a>.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>hp</strong> (<a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.ModelParams"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.ModelParams</span></code></a>) – ModelParams object.</p></li>
<li><p><strong>outdir</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Path for event logs and checkpoints.</p></li>
<li><p><strong>labels</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a>) – Dict mapping slide names to outcome labels (int or
float format).</p></li>
</ul>
</dd>
<dt class="field-even">Keyword Arguments<span class="colon">:</span></dt>
<dd class="field-even"><ul class="simple">
<li><p><strong>slide_input</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a>) – Dict mapping slide names to additional
slide-level input, concatenated after post-conv.</p></li>
<li><p><strong>name</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Optional name describing the model, used for
model saving. Defaults to ‘Trainer’.</p></li>
<li><p><strong>feature_sizes</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – List of sizes of input features.
Required if providing additional input features as input to
the model.</p></li>
<li><p><strong>feature_names</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – List of names for input features.
Used when permuting feature importance.</p></li>
<li><p><strong>outcome_names</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>, </em><em>optional</em>) – Name of each outcome. Defaults to
“Outcome {X}” for each outcome.</p></li>
<li><p><strong>mixed_precision</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use FP16 mixed precision (rather
than FP32). Defaults to True.</p></li>
<li><p><strong>allow_tf32</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Allow internal use of Tensorfloat-32 format.
Defaults to False.</p></li>
<li><p><strong>config</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>optional</em>) – Training configuration dictionary, used
for logging. Defaults to None.</p></li>
<li><p><strong>use_neptune</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Use Neptune API logging.
Defaults to False</p></li>
<li><p><strong>neptune_api</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Neptune API token, used for logging.
Defaults to None.</p></li>
<li><p><strong>neptune_workspace</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>, </em><em>optional</em>) – Neptune workspace.
Defaults to None.</p></li>
<li><p><strong>load_method</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Either ‘full’ or ‘weights’. Method to use
when loading a Tensorflow model. If ‘full’, loads the model with
<code class="docutils literal notranslate"><span class="pre">tf.keras.models.load_model()</span></code>. If ‘weights’, will read the
<code class="docutils literal notranslate"><span class="pre">params.json</span></code> configuration file, build the model architecture,
and then load weights from the given model with
<code class="docutils literal notranslate"><span class="pre">Model.load_weights()</span></code>. Loading with ‘full’ may improve
compatibility across Slideflow versions. Loading with ‘weights’
may improve compatibility across hardware &amp; environments.</p></li>
<li><p><strong>custom_objects</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>Optional</em>) – Dictionary mapping names
(strings) to custom classes or functions. Defaults to None.</p></li>
<li><p><strong>num_workers</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of dataloader workers. Only used for PyTorch.
Defaults to 4.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.build_feature_extractor">
<span class="sig-name descname"><span class="pre">build_feature_extractor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">name</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">backend</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">BaseFeatureExtractor</span></span></span><a class="reference internal" href="../_modules/slideflow/model/extractors/_factory/#build_feature_extractor"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.build_feature_extractor" title="Permalink to this definition"></a></dt>
<dd><p>Build a feature extractor.</p>
<p>The returned feature extractor is a callable object, which returns
features (often layer activations) for either a batch of images or a
<code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.WSI</span></code> object.</p>
<p>If generating features for a batch of images, images are expected to be in
(B, W, H, C) format and non-standardized (scaled 0-255) with dtype uint8.
The feature extractors perform all needed preprocessing on the fly.</p>
<p>If generating features for a slide, the slide is expected to be a
<code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.WSI</span></code> object. The feature extractor will generate features
for each tile in the slide, returning a numpy array of shape (W, H, F),
where F is the number of features.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>name</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Name of the feature extractor to build. Available
feature extractors are listed with
<a class="reference internal" href="#slideflow.model.list_extractors" title="slideflow.model.list_extractors"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.model.list_extractors()</span></code></a>.</p>
</dd>
<dt class="field-even">Keyword Arguments<span class="colon">:</span></dt>
<dd class="field-even"><ul class="simple">
<li><p><strong>tile_px</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Tile size (input image size), in pixels.</p></li>
<li><p><strong>**kwargs</strong> (<em>Any</em>) – All remaining keyword arguments are passed
to the feature extractor factory function, and may be different
for each extractor.</p></li>
</ul>
</dd>
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><p>A callable object which accepts a batch of images (B, W, H, C) of dtype
uint8 and returns a batch of features (dtype float32).</p>
</dd>
</dl>
<dl>
<dt>Examples</dt><dd><p>Create an extractor that calculates post-convolutional layer activations
from an imagenet-pretrained Resnet50 model.</p>
<blockquote>
<div><div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="n">extractor</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;resnet50_imagenet&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
<p>Create an extractor that calculates ‘conv4_block4_2_relu’ activations
from an imagenet-pretrained Resnet50 model.</p>
<blockquote>
<div><div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">extractor</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;resnet50_imagenet&#39;</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="s1">&#39;conv4_block4_2_relu</span>
<span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
<p>Create a pretrained “CTransPath” extractor.</p>
<blockquote>
<div><div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">extractor</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;ctranspath&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
<p>Use an extractor to calculate layer activations for an entire dataset.</p>
<blockquote>
<div><div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Load a project and dataset</span>
<span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">load_project</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="c1"># Create a feature extractor</span>
<span class="n">resnet</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;resnet50_imagenet&#39;</span>
<span class="p">)</span>
<span class="c1"># Calculate features for the entire dataset</span>
<span class="n">features</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">DatasetFeatures</span><span class="p">(</span>
<span class="n">resnet</span><span class="p">,</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">dataset</span>
<span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
<p>Generate a map of features across a slide.</p>
<blockquote>
<div><div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Load a slide</span>
<span class="n">wsi</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">WSI</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="c1"># Create a feature extractor</span>
<span class="n">retccl</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;retccl&#39;</span><span class="p">,</span>
<span class="n">resize</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
<span class="c1"># Create a feature map, a 2D array of shape</span>
<span class="c1"># (W, H, F), where F is the number of features.</span>
<span class="n">features</span> <span class="o">=</span> <span class="n">retccl</span><span class="p">(</span><span class="n">wsi</span><span class="p">)</span>
</pre></div>
</div>
</div></blockquote>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.list_extractors">
<span class="sig-name descname"><span class="pre">list_extractors</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/model/extractors/_registry/#list_extractors"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.list_extractors" title="Permalink to this definition"></a></dt>
<dd><p>Return a list of all available feature extractors.</p>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.load">
<span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><span class="pre">Module</span></span></span><a class="reference internal" href="../_modules/slideflow/model/torch/#load"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.load" title="Permalink to this definition"></a></dt>
<dd><p>Load a model trained with Slideflow.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>path</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Path to saved model. Must be a model trained in Slideflow.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>Loaded model.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>torch.nn.Module</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.is_tensorflow_model">
<span class="sig-name descname"><span class="pre">is_tensorflow_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">arg</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span></span><a class="reference internal" href="../_modules/slideflow/model/#is_tensorflow_model"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.is_tensorflow_model" title="Permalink to this definition"></a></dt>
<dd><p>Checks if the object is a Tensorflow Model or path to Tensorflow model.</p>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.is_tensorflow_tensor">
<span class="sig-name descname"><span class="pre">is_tensorflow_tensor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">arg</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span></span><a class="reference internal" href="../_modules/slideflow/model/#is_tensorflow_tensor"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.is_tensorflow_tensor" title="Permalink to this definition"></a></dt>
<dd><p>Checks if the given object is a Tensorflow Tensor.</p>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.is_torch_model">
<span class="sig-name descname"><span class="pre">is_torch_model</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">arg</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span></span><a class="reference internal" href="../_modules/slideflow/model/#is_torch_model"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.is_torch_model" title="Permalink to this definition"></a></dt>
<dd><p>Checks if the object is a PyTorch Module or path to PyTorch model.</p>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.is_torch_tensor">
<span class="sig-name descname"><span class="pre">is_torch_tensor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">arg</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Any" title="(in Python v3.12)"><span class="pre">Any</span></a></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span></span><a class="reference internal" href="../_modules/slideflow/model/#is_torch_tensor"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.is_torch_tensor" title="Permalink to this definition"></a></dt>
<dd><p>Checks if the given object is a Tensorflow Tensor.</p>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.read_hp_sweep">
<span class="sig-name descname"><span class="pre">read_hp_sweep</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">filename</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">models</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.List" title="(in Python v3.12)"><span class="pre">List</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Dict" title="(in Python v3.12)"><span class="pre">Dict</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="../model_params/#slideflow.ModelParams" title="slideflow.model.torch.ModelParams"><span class="pre">ModelParams</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="../_modules/slideflow/model/#read_hp_sweep"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.read_hp_sweep" title="Permalink to this definition"></a></dt>
<dd><p>Organizes a list of hyperparameters ojects and associated models names.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>filename</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Path to hyperparameter sweep JSON file.</p></li>
<li><p><strong>models</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.12)"><em>list</em></a><em>(</em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em>)</em>) – List of model names. Defaults to None.
If not supplied, returns all valid models from batch file.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>List of (Hyperparameter, model_name) for each HP combination</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.model.rebuild_extractor">
<span class="sig-name descname"><span class="pre">rebuild_extractor</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">bags_or_model</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">allow_errors</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">native_normalizer</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Tuple" title="(in Python v3.12)"><span class="pre">Tuple</span></a><span class="p"><span class="pre">[</span></span><span class="pre">BaseFeatureExtractor</span><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference internal" href="../norm/#slideflow.norm.StainNormalizer" title="slideflow.norm.StainNormalizer"><span class="pre">StainNormalizer</span></a><span class="w"> </span><span class="p"><span class="pre">|</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a><span class="p"><span class="pre">]</span></span></span></span><a class="reference internal" href="../_modules/slideflow/model/extractors/_factory/#rebuild_extractor"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.model.rebuild_extractor" title="Permalink to this definition"></a></dt>
<dd><p>Recreate the extractor used to generate features stored in bags.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>bags_or_model</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Either a path to directory containing feature bags,
or a path to a trained MIL model. If a path to a trained MIL model,
the extractor used to generate features will be recreated.</p></li>
<li><p><strong>allow_errors</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – If True, return None if the extractor
cannot be rebuilt. If False, raise an error. Defaults to False.</p></li>
<li><p><strong>native_normalizer</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a><em>, </em><em>optional</em>) – Whether to use PyTorch/Tensorflow-native
stain normalization, if applicable. If False, will use the OpenCV/Numpy
implementations. Defaults to True.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p><dl class="simple">
<dt>Extractor function, or None if <code class="docutils literal notranslate"><span class="pre">allow_errors</span></code> is</dt><dd><p>True and the extractor cannot be rebuilt.</p>
</dd>
<dt>Optional[StainNormalizer]: Stain normalizer used when generating</dt><dd><p>feature bags, or None if no stain normalization was used.</p>
</dd>
</dl>
</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>Optional[BaseFeatureExtractor]</p>
</dd>
</dl>
</dd></dl>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../model_tensorflow/" class="btn btn-neutral float-right" title="slideflow.model.tensorflow" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../mil_module/" class="btn btn-neutral" title="slideflow.mil" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">slideflow.model</a><ul>
<li><a class="reference internal" href="#trainer">Trainer</a><ul>
<li><a class="reference internal" href="#slideflow.model.Trainer"><code class="docutils literal notranslate"><span class="pre">Trainer</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.Trainer.load"><code class="docutils literal notranslate"><span class="pre">load()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.Trainer.evaluate"><code class="docutils literal notranslate"><span class="pre">evaluate()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.Trainer.predict"><code class="docutils literal notranslate"><span class="pre">predict()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.Trainer.train"><code class="docutils literal notranslate"><span class="pre">train()</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#regressiontrainer">RegressionTrainer</a><ul>
<li><a class="reference internal" href="#slideflow.model.RegressionTrainer"><code class="docutils literal notranslate"><span class="pre">RegressionTrainer</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#survivaltrainer">SurvivalTrainer</a><ul>
<li><a class="reference internal" href="#slideflow.model.SurvivalTrainer"><code class="docutils literal notranslate"><span class="pre">SurvivalTrainer</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#features">Features</a><ul>
<li><a class="reference internal" href="#slideflow.model.Features"><code class="docutils literal notranslate"><span class="pre">Features</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.Features.from_model"><code class="docutils literal notranslate"><span class="pre">from_model()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.Features.__call__"><code class="docutils literal notranslate"><span class="pre">__call__()</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#other-functions">Other functions</a><ul>
<li><a class="reference internal" href="#slideflow.model.build_trainer"><code class="docutils literal notranslate"><span class="pre">build_trainer()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.build_feature_extractor"><code class="docutils literal notranslate"><span class="pre">build_feature_extractor()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.list_extractors"><code class="docutils literal notranslate"><span class="pre">list_extractors()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.load"><code class="docutils literal notranslate"><span class="pre">load()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.is_tensorflow_model"><code class="docutils literal notranslate"><span class="pre">is_tensorflow_model()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.is_tensorflow_tensor"><code class="docutils literal notranslate"><span class="pre">is_tensorflow_tensor()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.is_torch_model"><code class="docutils literal notranslate"><span class="pre">is_torch_model()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.is_torch_tensor"><code class="docutils literal notranslate"><span class="pre">is_torch_tensor()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.read_hp_sweep"><code class="docutils literal notranslate"><span class="pre">read_hp_sweep()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.model.rebuild_extractor"><code class="docutils literal notranslate"><span class="pre">rebuild_extractor()</span></code></a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>