[78ef36]: / docs / features / index.html

Download this file

871 lines (704 with data), 65.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Generating Features &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Multiple-Instance Learning (MIL)" href="../mil/" />
<link rel="prev" title="Uncertainty Quantification" href="../uq/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>Generating Features</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/features.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="generating-features">
<span id="features"></span><h1>Generating Features<a class="headerlink" href="#generating-features" title="Permalink to this heading"></a></h1>
<p>Converting images into feature vectors is a common step for many machine learning tasks, including <a class="reference external" href="../posthoc">feature space analysis</a> and <a class="reference external" href="../mil">multiple-instance learning (MIL)</a>. Slideflow provides a simple API for generating features from image tiles and includes several pretrained feature extractors. You can see a list of all available feature extractors with <code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.list_extractors()</span></code>.</p>
<section id="id1">
<h2>Generating Features<a class="headerlink" href="#id1" title="Permalink to this heading"></a></h2>
<p>The first step in generating features from a dataset of images is creating a feature extractor. Many types of feature extractors can be used, including imagenet-pretrained models, models finetuned in Slideflow, histology-specific pretrained feature extractors (ie. “foundation models”), or fine-tuned SSL models. In all cases, feature extractors are built with <a class="reference internal" href="../slideflow/#slideflow.build_feature_extractor" title="slideflow.build_feature_extractor"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.build_feature_extractor()</span></code></a>, and features are generated for a <a class="reference external" href="../datasets_and_val">Dataset</a> using <a class="reference internal" href="../dataset/#slideflow.Dataset.generate_feature_bags" title="slideflow.Dataset.generate_feature_bags"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.generate_feature_bags()</span></code></a>, as described <a class="reference external" href="#bags">below</a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Build a feature extractor</span>
<span class="n">ctranspath</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;ctranspath&#39;</span><span class="p">)</span>
<span class="c1"># Generate features for a dataset</span>
<span class="n">dataset</span><span class="o">.</span><span class="n">generate_feature_bags</span><span class="p">(</span><span class="n">ctranspath</span><span class="p">,</span> <span class="n">outdir</span><span class="o">=</span><span class="s1">&#39;/path/to/features&#39;</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="pretrained-extractors">
<h2>Pretrained Extractors<a class="headerlink" href="#pretrained-extractors" title="Permalink to this heading"></a></h2>
<p>Slideflow includes several pathology-specific feature extractors, also referred to as foundation models, pretrained on large-scale histology datasets.</p>
<table class="docutils align-default" id="id2">
<caption><span class="caption-text"><strong>Pretrained feature extractors.</strong> Note: “histossl” was renamed to “phikon” in Slideflow 3.0.</span><a class="headerlink" href="#id2" title="Permalink to this table"></a></caption>
<colgroup>
<col style="width: 14%" />
<col style="width: 10%" />
<col style="width: 8%" />
<col style="width: 8%" />
<col style="width: 8%" />
<col style="width: 14%" />
<col style="width: 28%" />
<col style="width: 10%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>Model</p></th>
<th class="head"><p>Type</p></th>
<th class="head"><p>WSIs</p></th>
<th class="head"><p>Input size</p></th>
<th class="head"><p>Dim</p></th>
<th class="head"><p>Source</p></th>
<th class="head"><p>Package</p></th>
<th class="head"><p>Link</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><strong>Virchow</strong></p></td>
<td><p>DINOv2</p></td>
<td><p>1.5M</p></td>
<td><p>224</p></td>
<td><p>2560</p></td>
<td><p>Paige</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">slideflow</span></code></p></td>
<td><p><a class="reference external" href="http://arxiv.org/pdf/2309.07778v5">Paper</a></p></td>
</tr>
<tr class="row-odd"><td><p><strong>CTransPath</strong></p></td>
<td><p>SRCL</p></td>
<td><p>32K</p></td>
<td><p>224</p></td>
<td><p>768</p></td>
<td><p>Tencent AI Lab</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">slideflow-gpl</span></code></p></td>
<td><p><a class="reference external" href="https://www.sciencedirect.com/science/article/abs/pii/S1361841522002043">Paper</a></p></td>
</tr>
<tr class="row-even"><td><p><strong>RetCCL</strong></p></td>
<td><p>CCL</p></td>
<td><p>32K</p></td>
<td><p>256</p></td>
<td><p>2048</p></td>
<td><p>Tencent AI Lab</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">slideflow-gpl</span></code></p></td>
<td><p><a class="reference external" href="https://www.sciencedirect.com/science/article/abs/pii/S1361841522002730">Paper</a></p></td>
</tr>
<tr class="row-odd"><td><p><strong>Phikon</strong></p></td>
<td><p>iBOT</p></td>
<td><p>6.1K</p></td>
<td><p>224</p></td>
<td><p>768</p></td>
<td><p>Owkin</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">slideflow-noncommercial</span></code></p></td>
<td><p><a class="reference external" href="https://www.medrxiv.org/content/10.1101/2023.07.21.23292757v2.full.pdf">Paper</a></p></td>
</tr>
<tr class="row-even"><td><p><strong>PLIP</strong></p></td>
<td><p>CLIP</p></td>
<td><p>N/A</p></td>
<td><p>224</p></td>
<td><p>512</p></td>
<td><p>Zhao Lab</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">slideflow-noncommercial</span></code></p></td>
<td><p><a class="reference external" href="https://www.nature.com/articles/s41591-023-02504-3">Paper</a></p></td>
</tr>
<tr class="row-odd"><td><p><strong>UNI</strong></p></td>
<td><p>DINOv2</p></td>
<td><p>100K</p></td>
<td><p>224</p></td>
<td><p>1024</p></td>
<td><p>Mahmood Lab</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">slideflow-noncommercial</span></code></p></td>
<td><p><a class="reference external" href="https://www.nature.com/articles/s41591-024-02857-3">Paper</a></p></td>
</tr>
<tr class="row-even"><td><p><strong>GigaPath</strong></p></td>
<td><p>DINOv2</p></td>
<td><p>170K</p></td>
<td><p>256</p></td>
<td><p>1536</p></td>
<td><p>Microsoft</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">slideflow-noncommercial</span></code></p></td>
<td><p><a class="reference external" href="https://aka.ms/gigapath">Paper</a></p></td>
</tr>
</tbody>
</table>
<p>In order to respect the original licensing agreements, pretrained models are distributed in separate packages. The core <code class="docutils literal notranslate"><span class="pre">slideflow</span></code> package provides access to models under the <strong>Apache-2.0</strong> license, while models under <strong>GPL-3.0</strong> are available in the <code class="docutils literal notranslate"><span class="pre">slideflow-gpl</span></code> package. Models restricted to non-commercial use are available under the <strong>CC BY-NC 4.0</strong> license through the <code class="docutils literal notranslate"><span class="pre">slideflow-noncommercial</span></code> package.</p>
<section id="loading-weights">
<h3>Loading weights<a class="headerlink" href="#loading-weights" title="Permalink to this heading"></a></h3>
<p>Pretrained feature extractors will automatically download their weights from Hugging Face upon creation. Some models, such as PLIP, GigaPath, UNI, and Phikon, require approval for access. Request approval on Hugging Face and ensure your local machine has been <a class="reference external" href="https://huggingface.co/docs/huggingface_hub/en/quick-start#authentication">authenticated</a>.</p>
<p>All pretrained models can also be loaded using local weights. Use the <code class="docutils literal notranslate"><span class="pre">weights</span></code> argument when creating a feature extractor.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Load UNI with local weights</span>
<span class="n">uni</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;uni&#39;</span><span class="p">,</span> <span class="n">weights</span><span class="o">=</span><span class="s1">&#39;../pytorch_model.bin&#39;</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="image-preprocessing">
<h3>Image preprocessing<a class="headerlink" href="#image-preprocessing" title="Permalink to this heading"></a></h3>
<p>Each feature extractor includes a default image preprocessing pipeline that matches the original implementation. However, preprocessing can also be manually adjusted using various keyword arguments when creating a feature extractor.</p>
<ul class="simple">
<li><p><strong>resize</strong>: <code class="docutils literal notranslate"><span class="pre">int</span></code> or <code class="docutils literal notranslate"><span class="pre">bool</span></code>. If an <code class="docutils literal notranslate"><span class="pre">int</span></code>, resizes images to this size. If <code class="docutils literal notranslate"><span class="pre">True</span></code>, resizes images to the input size of the feature extractor. Default is <code class="docutils literal notranslate"><span class="pre">False</span></code>.</p></li>
<li><p><strong>center_crop</strong>: <code class="docutils literal notranslate"><span class="pre">int</span></code> or <code class="docutils literal notranslate"><span class="pre">bool</span></code>. If an <code class="docutils literal notranslate"><span class="pre">int</span></code>, crops images to this size. If <code class="docutils literal notranslate"><span class="pre">True</span></code>, crops images to the input size of the feature extractor. Center-cropping happens after resizing, if both are used. Default is <code class="docutils literal notranslate"><span class="pre">False</span></code>.</p></li>
<li><p><strong>interpolation</strong>: <code class="docutils literal notranslate"><span class="pre">str</span></code>. Interpolation method for resizing images. Default is <code class="docutils literal notranslate"><span class="pre">bilinear</span></code> for most models, but is <code class="docutils literal notranslate"><span class="pre">bicubic</span></code> for GigaPath and Virchow.</p></li>
<li><p><strong>antialias</strong>: <code class="docutils literal notranslate"><span class="pre">bool</span></code>. Whether to apply antialiasing to resized images. Default is <code class="docutils literal notranslate"><span class="pre">False</span></code> (matching the default behavior of torchvision &lt; 0.17).</p></li>
<li><p><strong>norm_mean</strong>: <code class="docutils literal notranslate"><span class="pre">list</span></code>. Mean values for image normalization. Default is <code class="docutils literal notranslate"><span class="pre">[0.485,</span> <span class="pre">0.456,</span> <span class="pre">0.406]</span></code> for all models except PLIP.</p></li>
<li><p><strong>norm_std</strong>: <code class="docutils literal notranslate"><span class="pre">list</span></code>. Standard deviation values for image normalization. Default is <code class="docutils literal notranslate"><span class="pre">[0.229,</span> <span class="pre">0.224,</span> <span class="pre">0.225]</span></code> for all models except PLIP.</p></li>
</ul>
<p>Example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Load a feature extractor with custom preprocessing</span>
<span class="n">extractor</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;ctranspath&#39;</span><span class="p">,</span>
<span class="n">resize</span><span class="o">=</span><span class="mi">224</span><span class="p">,</span>
<span class="n">interpolation</span><span class="o">=</span><span class="s1">&#39;bicubic&#39;</span><span class="p">,</span>
<span class="n">antialias</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Default values for these processing arguments are determined by the feature extractor. One notable exception to the standard preprocessing algorithm is GigaPath, for which images are resized first (default to 256x256) and then center cropped (default to 224x224), which mirrors the official implementation.</p>
<p>For transparency, you can see the current preprocessing pipeline with <code class="docutils literal notranslate"><span class="pre">extractor.transform</span></code>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ctranspath</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="gp">... </span> <span class="s1">&#39;ctranspath&#39;</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">resize</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">interpolation</span><span class="o">=</span><span class="s1">&#39;bicubic&#39;</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">center_crop</span><span class="o">=</span><span class="mi">224</span>
<span class="gp">... </span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ctranspath</span><span class="o">.</span><span class="n">transform</span>
<span class="go">Compose(</span>
<span class="go"> CenterCrop(size=(224, 224))</span>
<span class="go"> Resize(size=256, interpolation=bicubic, max_size=None, antialias=False)</span>
<span class="go"> Lambda()</span>
<span class="go"> Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))</span>
<span class="go">)</span>
</pre></div>
</div>
</section>
<section id="gigapath">
<h3>GigaPath<a class="headerlink" href="#gigapath" title="Permalink to this heading"></a></h3>
<p>GigaPath is a DINOv2-based model from Microsoft/Providence trained on 170k whole-slide images and is bundled with <code class="docutils literal notranslate"><span class="pre">slideflow-noncommercial</span></code>. The GigaPath model includes additional dependencies which are not broadly compatible with all OS distributions, and are thus not installed by default. To install the GigaPath dependencies:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>slideflow-noncommercial<span class="o">[</span>gigapath<span class="o">]</span> git+ssh://git@github.com/prov-gigapath/prov-gigapath
</pre></div>
</div>
<p>GigaPath has two stages: a tile encoder and slide-level encoder. The tile encoder (<code class="docutils literal notranslate"><span class="pre">&quot;gigapath.tile&quot;</span></code>) works the same as all other feature extractors in Slideflow. You can build this encoder directly:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Build the tile encoder</span>
<span class="n">gigapath_tile</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s2">&quot;gigapath.tile&quot;</span><span class="p">)</span>
<span class="c1"># Use the tile encoder</span>
<span class="n">project</span><span class="o">.</span><span class="n">generate_feature_bags</span><span class="p">(</span><span class="n">gigapath_tile</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
<p>or you can build the combined tile+slide model, and then use <code class="docutils literal notranslate"><span class="pre">gigapath.tile</span></code>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Build the tile encoder</span>
<span class="n">gigapath</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s2">&quot;gigapath&quot;</span><span class="p">)</span>
<span class="c1"># Use the tile encoder</span>
<span class="n">project</span><span class="o">.</span><span class="n">generate_feature_bags</span><span class="p">(</span><span class="n">gigapath</span><span class="o">.</span><span class="n">tile</span><span class="p">,</span> <span class="o">...</span><span class="p">)</span>
</pre></div>
</div>
<p>As there are two stages to GigaPath, there are also separate model weights. As with other pretrained feature extractors, the weights will be auto-downloaded from Hugging Face upon first use if you are logged into Hugging Face and have been granted access to the repository. If you have manually downloaded the weights, these can be used with the following:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Example of how to supply tile + slide weights</span>
<span class="c1"># For the full GigaPath model</span>
<span class="n">gigapath</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;gigapath&#39;</span><span class="p">,</span>
<span class="n">tile_encoder_weights</span><span class="o">=</span><span class="s1">&#39;../pytorch_model.bin&#39;</span><span class="p">,</span>
<span class="n">slide_encoder_weights</span><span class="o">=</span><span class="s1">&#39;../slide_encoder.pth&#39;</span>
<span class="p">)</span>
<span class="c1"># Or, just supply the tile weights</span>
<span class="n">gigapath_tile</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;gigapath.tile&#39;</span><span class="p">,</span>
<span class="n">weights</span><span class="o">=</span><span class="s1">&#39;pytorch_model.bin&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Once feature bags have been generated and saved with the GigaPath tile encoder, you can then generate slide-level embeddings with <code class="docutils literal notranslate"><span class="pre">gigapath.slide</span></code>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Load GigaPath</span>
<span class="n">gigapath</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;gigapath&#39;</span><span class="p">)</span>
<span class="c1"># Generate tile-level features</span>
<span class="n">project</span><span class="o">.</span><span class="n">generate_feature_bags</span><span class="p">(</span><span class="n">gigapath</span><span class="o">.</span><span class="n">tile</span><span class="p">,</span> <span class="o">...</span><span class="p">,</span> <span class="n">outdir</span><span class="o">=</span><span class="s1">&#39;/gigapath_bags&#39;</span><span class="p">)</span>
<span class="c1"># Generate slide-level embeddings</span>
<span class="n">gigapath</span><span class="o">.</span><span class="n">slide</span><span class="o">.</span><span class="n">generate_and_save</span><span class="p">(</span><span class="s1">&#39;/gigapath_bags&#39;</span><span class="p">,</span> <span class="n">outdir</span><span class="o">=</span><span class="s1">&#39;/gigapath_embeddings&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>In addition to running the tile and slide encoder steps separately, you can also run the combined pipeline all at once on a whole-slide image, generating a final slide-level embedding.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Load GigaPath</span>
<span class="n">gigapath</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;gigapath&#39;</span><span class="p">)</span>
<span class="c1"># Load slide</span>
<span class="n">wsi</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">WSI</span><span class="p">(</span><span class="s1">&#39;slide.svs&#39;</span><span class="p">,</span> <span class="n">tile_px</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">128</span><span class="p">)</span>
<span class="c1"># Generate slide embedding</span>
<span class="n">embedding</span> <span class="o">=</span> <span class="n">gigapath</span><span class="p">(</span><span class="n">wsi</span><span class="p">)</span>
</pre></div>
</div>
</section>
</section>
<section id="imagenet-features">
<h2>ImageNet Features<a class="headerlink" href="#imagenet-features" title="Permalink to this heading"></a></h2>
<p>To calculate features from an ImageNet-pretrained network, first build an imagenet feature extractor with <a class="reference internal" href="../slideflow/#slideflow.build_feature_extractor" title="slideflow.build_feature_extractor"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.build_feature_extractor()</span></code></a>. The first argument should be the name of an architecture followed by <code class="docutils literal notranslate"><span class="pre">_imagenet</span></code>, and the expected tile size should be passed to the keyword argument <code class="docutils literal notranslate"><span class="pre">tile_px</span></code>. You can optionally specify the layer from which to generate features with the <code class="docutils literal notranslate"><span class="pre">layers</span></code> argument; if not provided, it will default to calculating features from post-convolutional layer activations. For example, to build a ResNet50 feature extractor for images at 299 x 299 pixels:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">resnet50</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;resnet50_imagenet&#39;</span><span class="p">,</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span>
<span class="p">)</span>
</pre></div>
</div>
<p>This will calculate features using activations from the post-convolutional layer. You can also concatenate activations from multiple neural network layers and apply pooling for layers with 2D output shapes.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">resnet50</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;resnet50_imagenet&#39;</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;conv1_relu&#39;</span><span class="p">,</span> <span class="s1">&#39;conv3_block1_2_relu&#39;</span><span class="p">],</span>
<span class="n">pooling</span><span class="o">=</span><span class="s1">&#39;avg&#39;</span><span class="p">,</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span>
<span class="p">)</span>
</pre></div>
</div>
<p>If a model architecture is available in both the Tensorflow and PyTorch backends, Slideflow will default to using the active backend. You can manually set the feature extractor backend using <code class="docutils literal notranslate"><span class="pre">backend</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Create a PyTorch feature extractor</span>
<span class="n">extractor</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;resnet50_imagenet&#39;</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;layer2.0.conv1&#39;</span><span class="p">,</span> <span class="s1">&#39;layer3.1.conv2&#39;</span><span class="p">],</span>
<span class="n">pooling</span><span class="o">=</span><span class="s1">&#39;avg&#39;</span><span class="p">,</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span>
<span class="n">backend</span><span class="o">=</span><span class="s1">&#39;torch&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p>You can view all available feature extractors with <a class="reference internal" href="../model/#slideflow.model.list_extractors" title="slideflow.model.list_extractors"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.model.list_extractors()</span></code></a>.</p>
</section>
<section id="layer-activations">
<h2>Layer Activations<a class="headerlink" href="#layer-activations" title="Permalink to this heading"></a></h2>
<p>You can also calculate features from any model trained in Slideflow. The first argument to <code class="docutils literal notranslate"><span class="pre">build_feature_extractor()</span></code> should be the path of the trained model. You can optionally specify the layer at which to calculate activations using the <code class="docutils literal notranslate"><span class="pre">layers</span></code> keyword argument. If not specified, activations are calculated at the post-convolutional layer.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Calculate features from trained model.</span>
<span class="n">features</span> <span class="o">=</span> <span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;/path/to/model&#39;</span><span class="p">,</span>
<span class="n">layers</span><span class="o">=</span><span class="s1">&#39;sepconv3_bn&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
<section id="self-supervised-learning">
<h2>Self-Supervised Learning<a class="headerlink" href="#self-supervised-learning" title="Permalink to this heading"></a></h2>
<p>Finally, you can also generate features from a trained <a class="reference internal" href="../ssl/#simclr-ssl"><span class="std std-ref">self-supervised learning</span></a> model (either <a class="reference external" href="https://github.com/jamesdolezal/simclr">SimCLR</a> or <a class="reference external" href="https://github.com/jamesdolezal/dinov2">DinoV2</a>).</p>
<p>For SimCLR models, use <code class="docutils literal notranslate"><span class="pre">'simclr'</span></code> as the first argument to <code class="docutils literal notranslate"><span class="pre">build_feature_extractor()</span></code>, and pass the path to a saved model (or saved checkpoint file) via the keyword argument <code class="docutils literal notranslate"><span class="pre">ckpt</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">simclr</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;simclr&#39;</span><span class="p">,</span>
<span class="n">ckpt</span><span class="o">=</span><span class="s1">&#39;/path/to/simclr.ckpt&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p>For DinoV2 models, use <code class="docutils literal notranslate"><span class="pre">'dinov2'</span></code> as the first argument, and pass the model configuration YAML file to <code class="docutils literal notranslate"><span class="pre">cfg</span></code> and the teacher checkpoint weights to <code class="docutils literal notranslate"><span class="pre">weights</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dinov2</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span>
<span class="s1">&#39;dinov2&#39;</span><span class="p">,</span>
<span class="n">weights</span><span class="o">=</span><span class="s1">&#39;/path/to/teacher_checkpoint.pth&#39;</span><span class="p">,</span>
<span class="n">cfg</span><span class="o">=</span><span class="s1">&#39;/path/to/config.yaml&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
<section id="custom-extractors">
<h2>Custom Extractors<a class="headerlink" href="#custom-extractors" title="Permalink to this heading"></a></h2>
<p>Slideflow also provides an API for integrating your own custom, pretrained feature extractor. See <a class="reference internal" href="../custom_extractors/#custom-extractors"><span class="std std-ref">Custom Feature Extractors</span></a> for additional information.</p>
</section>
<section id="exporting-features">
<span id="bags"></span><h2>Exporting Features<a class="headerlink" href="#exporting-features" title="Permalink to this heading"></a></h2>
<section id="feature-bags">
<h3>Feature bags<a class="headerlink" href="#feature-bags" title="Permalink to this heading"></a></h3>
<p>Once you have prepared a feature extractor, features can be generated for a dataset and exported to disk for later use. Pass a feature extractor to the first argument of <a class="reference internal" href="../project/#slideflow.Project.generate_feature_bags" title="slideflow.Project.generate_feature_bags"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.generate_feature_bags()</span></code></a>, with a <a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Dataset</span></code></a> as the second argument.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Load a project and dataset.</span>
<span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Project</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">302</span><span class="p">)</span>
<span class="c1"># Create a feature extractor.</span>
<span class="n">ctranspath</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;ctranspath&#39;</span><span class="p">,</span> <span class="n">resize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># Calculate &amp; export feature bags.</span>
<span class="n">P</span><span class="o">.</span><span class="n">generate_feature_bags</span><span class="p">(</span><span class="n">ctranspath</span><span class="p">,</span> <span class="n">dataset</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>If you are generating features from a SimCLR model trained with stain normalization,
you should specify the stain normalizer using the <code class="docutils literal notranslate"><span class="pre">normalizer</span></code> argument to <a class="reference internal" href="../project/#slideflow.Project.generate_feature_bags" title="slideflow.Project.generate_feature_bags"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.generate_feature_bags()</span></code></a> or <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures" title="slideflow.DatasetFeatures"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures</span></code></a>.</p>
</div>
<p>Features are calculated for slides in batches, keeping memory usage low. By default, features are saved to disk in a directory named <code class="docutils literal notranslate"><span class="pre">pt_files</span></code> within the project directory, but you can override the destination directory using the <code class="docutils literal notranslate"><span class="pre">outdir</span></code> argument.</p>
<p>Alternatively, you can calculate features for a dataset using <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures" title="slideflow.DatasetFeatures"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures</span></code></a> and the <code class="docutils literal notranslate"><span class="pre">.to_torch()</span></code> method. This will calculate features for your entire dataset at once, which may require a large amount of memory. The first argument should be the feature extractor, and the second argument should be a <a class="reference internal" href="../dataset/#slideflow.Dataset" title="slideflow.Dataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Dataset</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Calculate features for the entire dataset.</span>
<span class="n">features</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">DatasetFeatures</span><span class="p">(</span><span class="n">ctranspath</span><span class="p">,</span> <span class="n">dataset</span><span class="p">)</span>
<span class="c1"># Export feature bags.</span>
<span class="n">features</span><span class="o">.</span><span class="n">to_torch</span><span class="p">(</span><span class="s1">&#39;/path/to/bag_directory/&#39;</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>Using <a class="reference internal" href="../dataset_features/#slideflow.DatasetFeatures" title="slideflow.DatasetFeatures"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.DatasetFeatures</span></code></a> directly may result in a large amount of memory usage, particularly for sizable datasets. When generating feature bags for training MIL models, it is recommended to use <a class="reference internal" href="../project/#slideflow.Project.generate_feature_bags" title="slideflow.Project.generate_feature_bags"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.generate_feature_bags()</span></code></a> instead.</p>
</div>
<p>Feature “bags” are PyTorch tensors of features for all images in a slide, saved to disk as <code class="docutils literal notranslate"><span class="pre">.pt</span></code> files. These bags are used to train MIL models. Bags can be manually loaded and inspected using <code class="xref py py-func docutils literal notranslate"><span class="pre">torch.load()</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">torch</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">bag</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">&#39;/path/to/bag.pt&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">bag</span><span class="o">.</span><span class="n">shape</span>
<span class="go">torch.Size([2310, 768])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">bag</span><span class="o">.</span><span class="n">dtype</span>
<span class="go">torch.float32</span>
</pre></div>
</div>
<p>When image features are exported for a dataset, the feature extractor configuration is saved to <code class="docutils literal notranslate"><span class="pre">bags_config.json</span></code> in the same directory as the exported features. This configuration file can be used to rebuild the feature extractor. An example file is shown below.</p>
<div class="highlight-json notranslate"><div class="highlight"><pre><span></span><span class="p">{</span>
<span class="w"> </span><span class="nt">&quot;extractor&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">&quot;class&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;slideflow.model.extractors.ctranspath.CTransPathFeatures&quot;</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;kwargs&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">&quot;center_crop&quot;</span><span class="p">:</span><span class="w"> </span><span class="kc">true</span>
<span class="w"> </span><span class="p">}</span>
<span class="w"> </span><span class="p">},</span>
<span class="w"> </span><span class="nt">&quot;normalizer&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">&quot;method&quot;</span><span class="p">:</span><span class="w"> </span><span class="s2">&quot;macenko&quot;</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;fit&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="nt">&quot;stain_matrix_target&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">[</span>
<span class="w"> </span><span class="p">[</span>
<span class="w"> </span><span class="mf">0.5062568187713623</span><span class="p">,</span>
<span class="w"> </span><span class="mf">0.22186939418315887</span>
<span class="w"> </span><span class="p">],</span>
<span class="w"> </span><span class="p">[</span>
<span class="w"> </span><span class="mf">0.7532230615615845</span><span class="p">,</span>
<span class="w"> </span><span class="mf">0.8652154803276062</span>
<span class="w"> </span><span class="p">],</span>
<span class="w"> </span><span class="p">[</span>
<span class="w"> </span><span class="mf">0.4069173336029053</span><span class="p">,</span>
<span class="w"> </span><span class="mf">0.42241501808166504</span>
<span class="w"> </span><span class="p">]</span>
<span class="w"> </span><span class="p">],</span>
<span class="w"> </span><span class="nt">&quot;target_concentrations&quot;</span><span class="p">:</span><span class="w"> </span><span class="p">[</span>
<span class="w"> </span><span class="mf">1.7656903266906738</span><span class="p">,</span>
<span class="w"> </span><span class="mf">1.2797492742538452</span>
<span class="w"> </span><span class="p">]</span>
<span class="w"> </span><span class="p">}</span>
<span class="w"> </span><span class="p">},</span>
<span class="w"> </span><span class="nt">&quot;num_features&quot;</span><span class="p">:</span><span class="w"> </span><span class="mi">2048</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;tile_px&quot;</span><span class="p">:</span><span class="w"> </span><span class="mi">299</span><span class="p">,</span>
<span class="w"> </span><span class="nt">&quot;tile_um&quot;</span><span class="p">:</span><span class="w"> </span><span class="mi">302</span>
<span class="p">}</span>
</pre></div>
</div>
<p>The feature extractor can be manually rebuilt using <a class="reference internal" href="../model/#slideflow.model.rebuild_extractor" title="slideflow.model.rebuild_extractor"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.model.rebuild_extractor()</span></code></a>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">slideflow.model</span> <span class="kn">import</span> <span class="n">rebuild_extractor</span>
<span class="c1"># Recreate the feature extractor</span>
<span class="c1"># and stain normalizer, if applicable</span>
<span class="n">extractor</span><span class="p">,</span> <span class="n">normalizer</span> <span class="o">=</span> <span class="n">rebuild_extractor</span><span class="p">(</span><span class="s1">&#39;/path/to/bags_config.json&#39;</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="from-a-tfrecord">
<h3>From a TFRecord<a class="headerlink" href="#from-a-tfrecord" title="Permalink to this heading"></a></h3>
<p>In addition to generating and exporting feature bags for a dataset, features can also be generated from a single TFRecord file. This may be useful for debugging or testing purposes.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Create a feature extractor</span>
<span class="n">ctranspath</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;ctranspath&#39;</span><span class="p">)</span>
<span class="c1"># Bags is a tensor of shape (n_tiles, n_features)</span>
<span class="c1"># Coords is a tensor of shape (n_tiles, 2), containing x/y tile coordinates.</span>
<span class="n">bags</span><span class="p">,</span> <span class="n">coords</span> <span class="o">=</span> <span class="n">ctranspath</span><span class="p">(</span><span class="s1">&#39;file.tfrecords&#39;</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="from-a-whole-slide-image">
<h3>From a whole-slide image<a class="headerlink" href="#from-a-whole-slide-image" title="Permalink to this heading"></a></h3>
<p>Feature extractors can also create features from a whole-slide image. This is useful for single-slide analysis, MIL inference, and other tasks where features are needed for the entire slide. Features are returned as a 3D tensor, with shape <code class="docutils literal notranslate"><span class="pre">(width,</span> <span class="pre">height,</span> <span class="pre">n_features)</span></code>, reflecting the spatial arrangement of features for tiles across the image.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Load a feature extractor.</span>
<span class="n">ctranspath</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;ctranspath&#39;</span><span class="p">)</span>
<span class="c1"># Load a whole-slide image.</span>
<span class="n">wsi</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">WSI</span><span class="p">(</span><span class="s1">&#39;slide.svs&#39;</span><span class="p">,</span> <span class="n">tile_px</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">128</span><span class="p">)</span>
<span class="c1"># Generate features for the whole slide.</span>
<span class="c1"># Shape: (width, height, n_features)</span>
<span class="n">features</span> <span class="o">=</span> <span class="n">ctranspath</span><span class="p">(</span><span class="n">wsi</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="mixed-precision">
<h3>Mixed precision<a class="headerlink" href="#mixed-precision" title="Permalink to this heading"></a></h3>
<p>All feature extractors will use mixed precision by default. This can be disabled by setting the <code class="docutils literal notranslate"><span class="pre">mixed_precision</span></code> argument to <code class="docutils literal notranslate"><span class="pre">False</span></code> when creating the feature extractor.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Load a feature extractor without mixed precision</span>
<span class="n">extractor</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;ctranspath&#39;</span><span class="p">,</span> <span class="n">mixed_precision</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="license-citation">
<h3>License &amp; Citation<a class="headerlink" href="#license-citation" title="Permalink to this heading"></a></h3>
<p>Licensing and citation information for the pretrained feature extractors is accessible with the <code class="docutils literal notranslate"><span class="pre">.license</span></code> and <code class="docutils literal notranslate"><span class="pre">.citation</span></code> attributes.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">ctranspath</span><span class="o">.</span><span class="n">license</span>
<span class="go">&#39;GNU General Public License v3.0&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span><span class="p">(</span><span class="n">ctranspath</span><span class="o">.</span><span class="n">citation</span><span class="p">)</span>
<span class="go">@{wang2022,</span>
<span class="go"> title={Transformer-based Unsupervised Contrastive Learning for Histopathological Image Classification},</span>
<span class="go"> author={Wang, Xiyue and Yang, Sen and Zhang, Jun and Wang, Minghui and Zhang, Jing and Yang, Wei and Huang, Junzhou and Han, Xiao},</span>
<span class="go"> journal={Medical Image Analysis},</span>
<span class="go"> year={2022},</span>
<span class="go"> publisher={Elsevier}</span>
<span class="go">}</span>
</pre></div>
</div>
</section>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../mil/" class="btn btn-neutral float-right" title="Multiple-Instance Learning (MIL)" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../uq/" class="btn btn-neutral" title="Uncertainty Quantification" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Generating Features</a><ul>
<li><a class="reference internal" href="#id1">Generating Features</a></li>
<li><a class="reference internal" href="#pretrained-extractors">Pretrained Extractors</a><ul>
<li><a class="reference internal" href="#loading-weights">Loading weights</a></li>
<li><a class="reference internal" href="#image-preprocessing">Image preprocessing</a></li>
<li><a class="reference internal" href="#gigapath">GigaPath</a></li>
</ul>
</li>
<li><a class="reference internal" href="#imagenet-features">ImageNet Features</a></li>
<li><a class="reference internal" href="#layer-activations">Layer Activations</a></li>
<li><a class="reference internal" href="#self-supervised-learning">Self-Supervised Learning</a></li>
<li><a class="reference internal" href="#custom-extractors">Custom Extractors</a></li>
<li><a class="reference internal" href="#exporting-features">Exporting Features</a><ul>
<li><a class="reference internal" href="#feature-bags">Feature bags</a></li>
<li><a class="reference internal" href="#from-a-tfrecord">From a TFRecord</a></li>
<li><a class="reference internal" href="#from-a-whole-slide-image">From a whole-slide image</a></li>
<li><a class="reference internal" href="#mixed-precision">Mixed precision</a></li>
<li><a class="reference internal" href="#license-citation">License &amp; Citation</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>