[78ef36]: / docs / custom_extractors / index.html

Download this file

656 lines (468 with data), 42.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Custom Feature Extractors &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Strong Supervision with Tile Labels" href="../tile_labels/" />
<link rel="prev" title="Dataloaders: Sampling and Augmentation" href="../dataloaders/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>Custom Feature Extractors</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/custom_extractors.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="custom-feature-extractors">
<span id="custom-extractors"></span><h1>Custom Feature Extractors<a class="headerlink" href="#custom-feature-extractors" title="Permalink to this heading"></a></h1>
<p>Slideflow includes several <a class="reference internal" href="../mil/#mil"><span class="std std-ref">pretrained feature extractors</span></a> for converting image tiles into feature vectors as well as tools to assist with building your own feature extractor. In this note, we’ll walk through the process of building a custom feature extractor from both a PyTorch and Tensorflow model.</p>
<section id="pytorch">
<h2>PyTorch<a class="headerlink" href="#pytorch" title="Permalink to this heading"></a></h2>
<p>Feature extractors are implemented as a subclass of <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.model.extractors._factory_torch.TorchFeatureExtractor</span></code>. The base class provides core functionality and helper methods for generating features from image tiles (dtype uint8) or whole-slide images (type <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.WSI</span></code>).</p>
<p>The initializer should create the feature extraction model and move it to the appropriate device (<em>i.e.</em> GPU). The model should be a <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.Module</span></code> that accepts an image tensor as input and returns a feature tensor as output.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Import your custom torch.nn.Module,</span>
<span class="c1"># which generates features from an image.</span>
<span class="kn">from</span> <span class="nn">my_module</span> <span class="kn">import</span> <span class="n">MyModel</span>
<span class="kn">from</span> <span class="nn">slideflow.model.extractors._factory_torch</span> <span class="kn">import</span> <span class="n">TorchFeatureExtractor</span>
<span class="k">class</span> <span class="nc">MyFeatureExtractor</span><span class="p">(</span><span class="n">TorchFeatureExtractor</span><span class="p">):</span>
<span class="n">tag</span> <span class="o">=</span> <span class="s1">&#39;my_feature_extractor&#39;</span> <span class="c1"># Human-readable identifier</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># Create the device, move to GPU, and set in evaluation mode.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="n">MyModel</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
</pre></div>
</div>
<p>Next, the initializer should set the number of features expected to be returned by the model.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="o">...</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="o">...</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_features</span> <span class="o">=</span> <span class="mi">1024</span>
</pre></div>
</div>
<p>The initializer is also responsible for registering image preprocessing. The image preprocessing transformation, a function which converts a raw <code class="docutils literal notranslate"><span class="pre">uint8</span></code> image to a <code class="docutils literal notranslate"><span class="pre">float32</span></code> tensor for model input, should be stored in <code class="docutils literal notranslate"><span class="pre">self.transform</span></code>. If the transformation standardizes the images, then the parameter <code class="docutils literal notranslate"><span class="pre">self.preprocess_kwargs</span></code> should be set to <code class="docutils literal notranslate"><span class="pre">{'standardize':</span> <span class="pre">False}</span></code>, indicating that Slideflow should not perform any additional standardization. You can use the class method <code class="docutils literal notranslate"><span class="pre">.build_transform()</span></code> to use the standard preprocessing pipeline.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">torchvision</span> <span class="kn">import</span> <span class="n">transforms</span>
<span class="o">...</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="o">...</span>
<span class="c1"># Image preprocessing.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transform</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">build_transform</span><span class="p">(</span><span class="n">img_size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
<span class="c1"># Disable Slideflow standardization,</span>
<span class="c1"># as we are standardizing with transforms.Normalize</span>
<span class="bp">self</span><span class="o">.</span><span class="n">preprocess_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;standardize&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">}</span>
</pre></div>
</div>
<p>The final required method is <code class="docutils literal notranslate"><span class="pre">.dump_config()</span></code>, which returns a dictionary of configuration parameters needed to regenerate this class. It should return a dictionary with <code class="docutils literal notranslate"><span class="pre">&quot;class&quot;</span></code> and <code class="docutils literal notranslate"><span class="pre">&quot;kwargs&quot;</span></code> attributes. This configuration is saved to a JSON configuration file when generating bags for MIL training.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="o">...</span>
<span class="k">def</span> <span class="nf">dump_config</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_dump_config</span><span class="p">(</span>
<span class="n">class_name</span><span class="o">=</span><span class="s1">&#39;my_module.MyFeatureExtractor&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p>The final class should look like this:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">my_module</span> <span class="kn">import</span> <span class="n">MyModel</span>
<span class="kn">from</span> <span class="nn">slideflow.model.extractors._factory_torch</span> <span class="kn">import</span> <span class="n">TorchFeatureExtractor</span>
<span class="kn">from</span> <span class="nn">torchvision</span> <span class="kn">import</span> <span class="n">transforms</span>
<span class="k">class</span> <span class="nc">MyFeatureExtractor</span><span class="p">(</span><span class="n">TorchFeatureExtractor</span><span class="p">):</span>
<span class="n">tag</span> <span class="o">=</span> <span class="s1">&#39;my_feature_extractor&#39;</span> <span class="c1"># Human-readable identifier</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># Create the device, move to GPU, and set in evaluation mode.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="n">MyModel</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_features</span> <span class="o">=</span> <span class="mi">1024</span>
<span class="c1"># Image preprocessing.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transform</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">build_transform</span><span class="p">(</span><span class="n">img_size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
<span class="c1"># Disable Slideflow standardization,</span>
<span class="c1"># as we are standardizing with transforms.Normalize</span>
<span class="bp">self</span><span class="o">.</span><span class="n">preprocess_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;standardize&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">}</span>
<span class="k">def</span> <span class="nf">dump_config</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_dump_config</span><span class="p">(</span>
<span class="n">class_name</span><span class="o">=</span><span class="s1">&#39;my_module.MyFeatureExtractor&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p>You can then use the feature extractor for generating bags for MIL training, as described in <a class="reference internal" href="../mil/#mil"><span class="std std-ref">Multiple-Instance Learning (MIL)</span></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Build the feature extractor.</span>
<span class="n">myfeatures</span> <span class="o">=</span> <span class="n">MyFeatureExtractor</span><span class="p">()</span>
<span class="c1"># Load a dataset.</span>
<span class="n">project</span> <span class="o">=</span> <span class="n">slideflow</span><span class="o">.</span><span class="n">load_project</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">project</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="c1"># Generate bags.</span>
<span class="n">project</span><span class="o">.</span><span class="n">generate_feature_bags</span><span class="p">(</span><span class="n">myfeatures</span><span class="p">,</span> <span class="n">dataset</span><span class="p">)</span>
</pre></div>
</div>
<p>You can also generate features across whole-slide images, returning a grid of features for each slide. The size of the returned grid reflects the slide’s tile grid. For example, for a slide with 24 columns and 33 rows of tiles, the returned grid will have shape <code class="docutils literal notranslate"><span class="pre">(24,</span> <span class="pre">33,</span> <span class="pre">n_features)</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">myfeatures</span> <span class="o">=</span> <span class="n">MyFeatureExtractor</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">wsi</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">WSI</span><span class="p">(</span><span class="s1">&#39;path/to/wsi&#39;</span><span class="p">,</span> <span class="n">tile_px</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">302</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">features</span> <span class="o">=</span> <span class="n">myfeatures</span><span class="p">(</span><span class="n">wsi</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">features</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(24, 33, 1024)</span>
</pre></div>
</div>
<p>Finally, the feature extractor can also be used to perform latent space analysis and generate mosaic maps, as described in <a class="reference internal" href="../posthoc/#activations"><span class="std std-ref">Layer Activations</span></a>.</p>
<p>Slideflow includes a registration system for keeping track of all available feature extractors. To register your feature extractor, use the <code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.model.extractors.register_torch()</span></code> decorator.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">slideflow.model.extractors</span> <span class="kn">import</span> <span class="n">register_torch</span>
<span class="nd">@register_torch</span>
<span class="k">def</span> <span class="nf">my_feature_extractor</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">return</span> <span class="n">MyFeatureExtractor</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
</pre></div>
</div>
<p>Once registered, a feature extractor can be built by name:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="n">extractor</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;my_feature_extractor&#39;</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="tensorflow">
<h2>Tensorflow<a class="headerlink" href="#tensorflow" title="Permalink to this heading"></a></h2>
<p>Tensorflow feature extractors are implemented very similarly to PyTorch feature extractors, extended from <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.model.extractors._tensorflow_base.TensorflowFeatureExtractor</span></code>.</p>
<p>The initializer should create the model and set the expected number of features.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">my_module</span> <span class="kn">import</span> <span class="n">MyModel</span>
<span class="kn">from</span> <span class="nn">slideflow.model.extractors._tensorflow_base</span> <span class="kn">import</span> <span class="n">TensorflowFeatureExtractor</span>
<span class="k">class</span> <span class="nc">MyFeatureExtractor</span><span class="p">(</span><span class="n">TensorflowFeatureExtractor</span><span class="p">):</span>
<span class="n">tag</span> <span class="o">=</span> <span class="s1">&#39;my_feature_extractor&#39;</span> <span class="c1"># Unique identifier</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># Create the model.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="n">MyModel</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_features</span> <span class="o">=</span> <span class="mi">1024</span>
</pre></div>
</div>
<p>The initializer is also responsible for registering image preprocessing and transformations. Preprocessing steps are stored in the <code class="docutils literal notranslate"><span class="pre">.preprocess_kwargs</span></code> dictionary, which should have the keys <code class="docutils literal notranslate"><span class="pre">standardize</span></code> and <code class="docutils literal notranslate"><span class="pre">transform</span></code>. If <code class="docutils literal notranslate"><span class="pre">standardize=True</span></code>, images will be standardized using <a class="reference external" href="https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization"><code class="docutils literal notranslate"><span class="pre">tf.image.per_image_standardization</span></code></a>. If <code class="docutils literal notranslate"><span class="pre">transform</span></code> is not None, it should be a callable that accepts a single image tensor and returns a transformed image tensor.</p>
<p>For example, to only perform standardization and no further preprocessing:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="o">...</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="o">...</span>
<span class="c1"># Image preprocessing.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">preprocess_kwargs</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;standardize&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="s1">&#39;transform&#39;</span><span class="p">:</span> <span class="kc">None</span>
<span class="p">}</span>
</pre></div>
</div>
<p>To perform standardization and resize images to 256x256:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">tensorflow</span> <span class="k">as</span> <span class="nn">tf</span>
<span class="nd">@tf</span><span class="o">.</span><span class="n">function</span>
<span class="k">def</span> <span class="nf">resize_256</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">return</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">image</span><span class="o">.</span><span class="n">resize</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="p">(</span><span class="n">resize_px</span><span class="p">,</span> <span class="n">resize_px</span><span class="p">))</span>
<span class="o">...</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="o">...</span>
<span class="c1"># Image preprocessing.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">preprocess_kwargs</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;standardize&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="s1">&#39;transform&#39;</span><span class="p">:</span> <span class="n">resize_256</span>
<span class="p">}</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">.dump_config()</span></code> method should then be set, which is expected to return a dictionary of configuration parameters needed to regenerate this class. It should return a dictionary with <code class="docutils literal notranslate"><span class="pre">&quot;class&quot;</span></code> and <code class="docutils literal notranslate"><span class="pre">&quot;kwargs&quot;</span></code> attributes. This configuration is saved to a JSON configuration file when generating bags for MIL training.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="o">...</span>
<span class="k">def</span> <span class="nf">dump_config</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="p">{</span>
<span class="s1">&#39;class&#39;</span><span class="p">:</span> <span class="s1">&#39;MyFeatureExtractor&#39;</span><span class="p">,</span>
<span class="s1">&#39;kwargs&#39;</span><span class="p">:</span> <span class="p">{}</span>
<span class="p">}</span>
</pre></div>
</div>
<p>The final class should look like this:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">my_module</span> <span class="kn">import</span> <span class="n">MyModel</span>
<span class="kn">from</span> <span class="nn">slideflow.model.extractors._tensorflow_base</span> <span class="kn">import</span> <span class="n">TensorflowFeatureExtractor</span>
<span class="k">class</span> <span class="nc">MyFeatureExtractor</span><span class="p">(</span><span class="n">TensorflowFeatureExtractor</span><span class="p">):</span>
<span class="n">tag</span> <span class="o">=</span> <span class="s1">&#39;my_feature_extractor&#39;</span> <span class="c1"># Unique identifier</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># Create the model.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="n">MyModel</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_features</span> <span class="o">=</span> <span class="mi">1024</span>
<span class="c1"># Image preprocessing.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">preprocess_kwargs</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;standardize&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
<span class="s1">&#39;transform&#39;</span><span class="p">:</span> <span class="kc">None</span>
<span class="p">}</span>
<span class="k">def</span> <span class="nf">dump_config</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="p">{</span>
<span class="s1">&#39;class&#39;</span><span class="p">:</span> <span class="s1">&#39;MyFeatureExtractor&#39;</span><span class="p">,</span>
<span class="s1">&#39;kwargs&#39;</span><span class="p">:</span> <span class="p">{}</span>
<span class="p">}</span>
</pre></div>
</div>
<p>As described above, this feature extractor can then be used to create bags for MIL training, generate features across whole-slide images, or perform feature space analysis across a dataset.</p>
<p>To register your feature extractor, use the <code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.model.extractors.register_tensorflow()</span></code> decorator.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">slideflow.model.extractors</span> <span class="kn">import</span> <span class="n">register_tf</span>
<span class="nd">@register_tf</span>
<span class="k">def</span> <span class="nf">my_feature_extractor</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">return</span> <span class="n">MyFeatureExtractor</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
</pre></div>
</div>
<p>…which will allow the feature extractor to be built by name:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="n">extractor</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">build_feature_extractor</span><span class="p">(</span><span class="s1">&#39;my_feature_extractor&#39;</span><span class="p">)</span>
</pre></div>
</div>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../tile_labels/" class="btn btn-neutral float-right" title="Strong Supervision with Tile Labels" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../dataloaders/" class="btn btn-neutral" title="Dataloaders: Sampling and Augmentation" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Custom Feature Extractors</a><ul>
<li><a class="reference internal" href="#pytorch">PyTorch</a></li>
<li><a class="reference internal" href="#tensorflow">Tensorflow</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>