[78ef36]: / docs / cellseg / index.html

Download this file

710 lines (553 with data), 42.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Cell Segmentation &mdash; slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Custom Training Loops" href="../custom_loops/" />
<link rel="prev" title="Tissue Segmentation" href="../segmentation/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation &amp; heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> &gt;
</li>
<li>Cell Segmentation</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/cellseg.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="cell-segmentation">
<span id="cellseg"></span><h1>Cell Segmentation<a class="headerlink" href="#cell-segmentation" title="Permalink to this heading"></a></h1>
<p>Many tasks in digital pathology rely on analysis of cellular features, as opposed to higher-level architectural features. Slideflow supports whole-slide analysis of cellular features with a cell detection and segmentation pipeline based on <a class="reference external" href="https://www.nature.com/articles/s41592-020-01018-x">Cellpose</a>. To start, ensure <code class="docutils literal notranslate"><span class="pre">cellpose</span></code> has been installed via pip:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip<span class="w"> </span>install<span class="w"> </span>cellpose
</pre></div>
</div>
<section id="approach">
<h2>Approach<a class="headerlink" href="#approach" title="Permalink to this heading"></a></h2>
<figure class="align-default">
<img alt="../_images/cell_segmentation.png" src="../_images/cell_segmentation.png" />
</figure>
<p>The general approach for cell detection and segmentation in Slideflow is illustrated above, and will be discussed in the following sections. In short, the general approach is to tune the cell segmentation parameters on a single slide, use these parameters to detect cells in all of your slides, then extract cell images at these locations.</p>
</section>
<section id="slideflow-studio">
<h2>Slideflow Studio<a class="headerlink" href="#slideflow-studio" title="Permalink to this heading"></a></h2>
<p>Cellpose models have several configurable parameters which will affect the quality of your segmentation masks, namely the <strong>pretrained model</strong> and <strong>cell diameter</strong>. The best way to determine the optimal parameters to use for your dataset is through interactive visualization using <a class="reference internal" href="../studio/#studio"><span class="std std-ref">Slideflow Studio</span></a>.</p>
<p>Use Cellpose-based cell segmentation in Slideflow Studio by <a class="reference internal" href="../studio/#extensions"><span class="std std-ref">enabling the extension</span></a>, or start Studio with the <code class="docutils literal notranslate"><span class="pre">--cellpose</span></code> flag:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python<span class="w"> </span>-m<span class="w"> </span>slideflow.studio<span class="w"> </span>--cellpose
</pre></div>
</div>
<section id="control-panel">
<h3>Control panel<a class="headerlink" href="#control-panel" title="Permalink to this heading"></a></h3>
<p>Open the Cell Segmentation section in the control panel to access the segmentation controls.</p>
<figure class="align-default">
<img alt="../_images/cellseg_workbench_panel.png" src="../_images/cellseg_workbench_panel.png" />
</figure>
<p>The <strong>Model &amp; Cell Diameter</strong> subsection is used to customize the segmentation model (defaults to
‘cyto2’) and cell diameter (defaults to 10 microns). Selecting “Auto-detect diameter” then
clicking “Preview” will perform cell segmentation on the portion of the slide currently in view. Once complete, the diameter text box will be updated with the detected cell diameter. Any <a class="reference external" href="https://cellpose.readthedocs.io/en/latest/gui.html#training-your-own-cellpose-model">user-trained models</a> will be listed in the model dropdown selection.</p>
</section>
<section id="viewing-cell-segmentations">
<h3>Viewing cell segmentations<a class="headerlink" href="#viewing-cell-segmentations" title="Permalink to this heading"></a></h3>
<figure class="align-default">
<img alt="../_images/cellseg_workbench_masks.png" src="../_images/cellseg_workbench_masks.png" />
</figure>
<p>The <strong>View Controls</strong> subsection provides options for customizing how cell segmentations are displayed. By default, cell segmentation masks are shown in cyan on a black background. The black
background can be removed by unchecking “Black BG”. You can add a green dot at each cell’s detected centroid by selecting the “Centroid option.” The “Alpha” slider controls transparency for the mask overlay.</p>
<p>You can also choose to view the segmentation masks as outlines. The “Outline” button will
convert any masks currently in view to outlines, allowing you to more easily see how the
masks match cells visible on the slide.</p>
<figure class="align-default">
<img alt="../_images/cellseg_workbench_outlines.png" src="../_images/cellseg_workbench_outlines.png" />
</figure>
<p>Finally, the “gradXY” option will show the flow gradients calculated during cell segmentation.</p>
<figure class="align-default">
<img alt="../_images/cellseg_workbench_flows.png" src="../_images/cellseg_workbench_flows.png" />
</figure>
</section>
<section id="preparing-wsi-segmentation">
<h3>Preparing WSI segmentation<a class="headerlink" href="#preparing-wsi-segmentation" title="Permalink to this heading"></a></h3>
<p>Once you are satisifed with a chosen model and cell diameter, set the cell diameter to a
manual value in microns. Once the cell diameter has been set, the middle control panel will
activate, allowing you to perform whole-slide segmentation.</p>
<p>The <strong>Otsu threshold</strong> option will perform strict Otsu’s thresholding on the whole slide image,
only performing cell segmentation in non-background areas (reducing computational time).
You can preview the Otsu’s thresholding algorithm in the <a class="reference internal" href="../studio/#studio-wsi"><span class="std std-ref">Slide section</span></a>. This option is disabled by default, as Otsu’s thresholding does not
work well for all slides (particularly cytology slides).</p>
<p>The <strong>Save flows</strong> option saves gradients during cell segmentation, allowing you to generate
visualizations as shown with the <strong>gradXY</strong> option above. This is disabled by default, as
calculation requires high RAM usage and may not be practical on all systems.</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 60%" />
<col style="width: 40%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p>The <strong>Advanced</strong> subsection provides additional options for controlling the cell segmentation process.</p>
<p><strong>Window</strong> controls the window size during cell segmentation; cell segmentation is performed
on images of this pixel size and then stitched together. The <strong>Tile</strong> option permits further sub-
tiling of each window, reducing GPU and CPU memory utilization.</p>
<p><strong>Downscale</strong> will scale down the final generated cell segmentation mask, reducing memory
utilization (both RAM and disk). <strong>Enable spawn workers</strong> enables a multiprocessing technique that improves cell segmentation speed at the cost of higher RAM usage.</p>
</td>
<td><a class="reference internal image-reference" href="../_images/cellseg_workbench_advanced.png"><img alt="../_images/cellseg_workbench_advanced.png" class="align-right" src="../_images/cellseg_workbench_advanced.png" style="width: 245px;" /></a>
</td>
</tr>
</tbody>
</table>
</section>
<section id="running-wsi-segmentation">
<h3>Running WSI segmentation<a class="headerlink" href="#running-wsi-segmentation" title="Permalink to this heading"></a></h3>
<p>Once you are satisifed with the settings, whole-slide cell segmentation can be initialized by
clicking <strong>Segment</strong>. You will see a notification in the bottom-right corner of the screen when
segmentation is complete. In the meantime, a progress bar will be shown in the terminal
along with ETA.</p>
</section>
<section id="exporting-results">
<h3>Exporting results<a class="headerlink" href="#exporting-results" title="Permalink to this heading"></a></h3>
<p>Once segmentation is complete, masks can be saved to disk for later use with <strong>Export</strong>.
Masks are saved in *.zip format, and can be loaded in Studio with drag-and-drop.</p>
</section>
</section>
<section id="segmenting-cells">
<h2>Segmenting cells<a class="headerlink" href="#segmenting-cells" title="Permalink to this heading"></a></h2>
<section id="single-slide-segmentation">
<h3>Single slide segmentation<a class="headerlink" href="#single-slide-segmentation" title="Permalink to this heading"></a></h3>
<p>Once the segmentation parameters have been determined, you can run segmentation for a single slide using <a class="reference internal" href="../slideflow_cellseg/#slideflow.cellseg.segment_slide" title="slideflow.cellseg.segment_slide"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.cellseg.segment_slide()</span></code></a>.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="kn">from</span> <span class="nn">slideflow.cellseg</span> <span class="kn">import</span> <span class="n">segment_slide</span>
<span class="n">segmentation</span> <span class="o">=</span> <span class="n">segment_slide</span><span class="p">(</span>
<span class="s1">&#39;.../slide.svs&#39;</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;cyto2&#39;</span><span class="p">,</span>
<span class="n">diam_um</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="o">...</span>
<span class="p">)</span>
<span class="n">segmentation</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;...masks.zip&#39;</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="project-wide-segmentation">
<h3>Project-wide segmentation<a class="headerlink" href="#project-wide-segmentation" title="Permalink to this heading"></a></h3>
<p>Cell segmentation can also be performed automatically for all slides in a Slideflow project.
Cell segmentation masks (and associated cell centroids) are calculated for all slides in the project using <a class="reference internal" href="../project/#slideflow.Project.cell_segmentation" title="slideflow.Project.cell_segmentation"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.cell_segmentation()</span></code></a>.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="c1"># Load a slideflow project</span>
<span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Project</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="c1"># Perform cell segmentation</span>
<span class="n">P</span><span class="o">.</span><span class="n">cell_segmentation</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;cyto2&#39;</span><span class="p">,</span>
<span class="n">diam_um</span><span class="o">=</span><span class="mi">10</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Relevant arguments for this function include:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">model</span></code> : Cell segmentation model. All cellpose models are supported, including ‘cyto’,
‘cyto2’, ‘nuclei’, and more.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">diam_um</span></code> : Cell diameter, in microns.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">buffer</span></code> : Path to a buffer, significantly speeds up segmentation if running from a HDD
(same as P.extract_tiles())</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">window_size</span></code> : Integer. Defaults to 256. Increasing this to 512 will make things slightly
faster, but will use a bit more GPU memory.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">downscale</span></code> : Factor by which to downscale the masks, to save memory. Defaults to 1
(no downscaling, full resolution). Downscale of 2 is a nice balance between memory
size and fidelity.</p></li>
</ul>
<p>Depending on the size of the slide, this may take between 5-25 minutes per slide.</p>
<p>Masks will be saved in the project subfolder <code class="docutils literal notranslate"><span class="pre">masks/</span></code> . As described above,
these masks can be loaded in Studio for interactive visualization via drag-and-drop.
They can also be used for downstream analysis and cell extraction, as described in the next
section.</p>
</section>
<section id="accessing-segmentation-masks">
<h3>Accessing segmentation masks<a class="headerlink" href="#accessing-segmentation-masks" title="Permalink to this heading"></a></h3>
<p>Saved cell segmentation masks (in *.zip format) can be loaded with <a class="reference internal" href="../slideflow_cellseg/#slideflow.cellseg.Segmentation" title="slideflow.cellseg.Segmentation"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.cellseg.Segmentation</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">slideflow.cellseg</span> <span class="kn">import</span> <span class="n">Segmentation</span>
<span class="n">seg</span> <span class="o">=</span> <span class="n">Segmentation</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">&#39;.../slide-masks.zip&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>The mask array, <code class="docutils literal notranslate"><span class="pre">Segmentation.masks</span></code> , is a <code class="docutils literal notranslate"><span class="pre">np.ndarray</span></code> with dtype of np.uint32. Zero values are background, and masks for each cell are represented by a unique integer. Flows/gradients,
if calculated, will be available in <code class="docutils literal notranslate"><span class="pre">Segmentation.flows</span></code>.</p>
<p>Centroids for detected cells can be calculated with Segmentation.centroids(), returning an array of centroid locations. By default, coordinates are returned in mask dimension space. With the argument <code class="docutils literal notranslate"><span class="pre">wsi_dim=True</span></code>, centroid coordinates will be in the slide dimension space.</p>
</section>
<section id="caveats">
<h3>Caveats<a class="headerlink" href="#caveats" title="Permalink to this heading"></a></h3>
<p>There are some caveats to the cell segmentation process, including:</p>
<ul class="simple">
<li><p><strong>Memory usage</strong>: Cell segmentation requires at minimum 32 GB of RAM. Larger slides (particularly cytology) may require up to 64 GB of RAM.</p></li>
<li><p><strong>Stitching artifacts</strong>: At present, due to the algorithm by which whole-slide cell segmentations are stitched together, you may see some cells that are not detected, missing in a grid-like pattern. Work is ongoing to reduce these stitching artifacts.</p></li>
<li><p><strong>Cell diameter</strong>: The quality of cell segmentation results is highly dependent on an appropriately chosen cell diameter. Use Slideflow Studio to find the best cell diameter for your application.</p></li>
</ul>
</section>
</section>
<section id="extracting-cells-from-slides">
<h2>Extracting cells from slides<a class="headerlink" href="#extracting-cells-from-slides" title="Permalink to this heading"></a></h2>
<p>Once segmentation masks have been calculated, images of individual cells can be extracted from a whole-slide image. This can be performed for either a single slide, or all slides in a project.</p>
<section id="from-a-single-slide">
<h3>From a single slide<a class="headerlink" href="#from-a-single-slide" title="Permalink to this heading"></a></h3>
<p>Start by loading the saved segmentation, as described above. Then, use <a class="reference internal" href="../slide/#slideflow.WSI.apply_segmentation" title="slideflow.WSI.apply_segmentation"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.WSI.apply_segmentation()</span></code></a>, followed by <a class="reference internal" href="../slide/#slideflow.WSI.extract_cells" title="slideflow.WSI.extract_cells"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.WSI.extract_cells()</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="kn">from</span> <span class="nn">slideflow.cellseg</span> <span class="kn">import</span> <span class="n">Segmentation</span>
<span class="c1"># Load WSI.</span>
<span class="n">wsi</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">WSI</span><span class="p">(</span><span class="s1">&#39;../slide.svs&#39;</span><span class="p">,</span> <span class="n">tile_px</span><span class="o">=</span><span class="mi">96</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="s1">&#39;40x&#39;</span><span class="p">)</span>
<span class="c1"># Load cell segmentations.</span>
<span class="n">seg</span> <span class="o">=</span> <span class="n">Segmentation</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">&#39;.../slide-masks.zip&#39;</span><span class="p">)</span>
<span class="c1"># Apply segmentations to the slide.</span>
<span class="n">wsi</span><span class="o">.</span><span class="n">apply_segmentation</span><span class="p">(</span><span class="n">seg</span><span class="p">)</span>
<span class="c1"># Extract images of cells.</span>
<span class="n">wsi</span><span class="o">.</span><span class="n">extract_cells</span><span class="p">(</span><span class="n">tiles_dir</span><span class="o">=...</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils align-default">
<colgroup>
<col style="width: 80%" />
<col style="width: 20%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p>By default, segmentation masks will be applied to the extracted cell images:</p></td>
<td><img alt="../_images/cell_masked.png" src="../_images/cell_masked.png" />
</td>
</tr>
<tr class="row-even"><td><p>However, you can choose not to apply masks by using the argument <code class="docutils literal notranslate"><span class="pre">apply_masks=False</span></code>.</p></td>
<td><img alt="../_images/cell_unmasked.png" src="../_images/cell_unmasked.png" />
</td>
</tr>
</tbody>
</table>
<p>Tile extraction is then performed as usual. Cell images (tiles) can either be saved as loose images or in TFRecord format. See <a class="reference internal" href="../slide/#slideflow.WSI.extract_cells" title="slideflow.WSI.extract_cells"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.WSI.extract_cells()</span></code></a> for more information.</p>
</section>
<section id="from-all-slides">
<h3>From all slides<a class="headerlink" href="#from-all-slides" title="Permalink to this heading"></a></h3>
<p>Additionally, cell images can be extracted from all slides in a project. This should only be
done after <a class="reference internal" href="../project/#slideflow.Project.cell_segmentation" title="slideflow.Project.cell_segmentation"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.cell_segmentation()</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">extract_cells</span><span class="p">(</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">96</span><span class="p">,</span>
<span class="n">tile_um</span><span class="o">=</span><span class="s1">&#39;40x&#39;</span><span class="p">,</span>
<span class="n">apply_masks</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Extracted cell images are saved by default in TFRecord format, and are otherwise handled
identically to tile images generated through <a class="reference internal" href="../project/#slideflow.Project.extract_tiles" title="slideflow.Project.extract_tiles"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.extract_tiles()</span></code></a>.</p>
</section>
</section>
<section id="complete-example">
<h2>Complete example<a class="headerlink" href="#complete-example" title="Permalink to this heading"></a></h2>
<p>An example of a complete cell segmentation pipeline is shown below, from parameter tuning
to final tile extraction from detected cells.</p>
<section id="id1">
<h3>1. Slideflow Studio<a class="headerlink" href="#id1" title="Permalink to this heading"></a></h3>
<p>Determine optimal cell segmenation parameters using Studio, as described above:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python<span class="w"> </span>-m<span class="w"> </span>slideflow.studio<span class="w"> </span>--cellpose
</pre></div>
</div>
</section>
<section id="id2">
<h3>2. Cell segmentation<a class="headerlink" href="#id2" title="Permalink to this heading"></a></h3>
<p>Segment cells for all slides in a Slideflow project.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Project</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="n">P</span><span class="o">.</span><span class="n">cell_segmentation</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s1">&#39;cyto2&#39;</span><span class="p">,</span>
<span class="n">diam_um</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">window_size</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span>
<span class="n">downscale</span><span class="o">=</span><span class="mi">2</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
<section id="cell-image-extraction">
<h3>3. Cell image extraction<a class="headerlink" href="#cell-image-extraction" title="Permalink to this heading"></a></h3>
<p>Extract image tiles of segmented cells, in this case using segmentation masks.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">extract_cells</span><span class="p">(</span>
<span class="n">tile_px</span><span class="o">=</span><span class="mi">96</span><span class="p">,</span>
<span class="n">tile_um</span><span class="o">=</span><span class="s1">&#39;40x&#39;</span><span class="p">,</span>
<span class="n">apply_masks</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">grayspace_fraction</span><span class="o">=</span><span class="mi">1</span>
<span class="p">)</span>
</pre></div>
</div>
</section>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../custom_loops/" class="btn btn-neutral float-right" title="Custom Training Loops" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../segmentation/" class="btn btn-neutral" title="Tissue Segmentation" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
&copy; Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Cell Segmentation</a><ul>
<li><a class="reference internal" href="#approach">Approach</a></li>
<li><a class="reference internal" href="#slideflow-studio">Slideflow Studio</a><ul>
<li><a class="reference internal" href="#control-panel">Control panel</a></li>
<li><a class="reference internal" href="#viewing-cell-segmentations">Viewing cell segmentations</a></li>
<li><a class="reference internal" href="#preparing-wsi-segmentation">Preparing WSI segmentation</a></li>
<li><a class="reference internal" href="#running-wsi-segmentation">Running WSI segmentation</a></li>
<li><a class="reference internal" href="#exporting-results">Exporting results</a></li>
</ul>
</li>
<li><a class="reference internal" href="#segmenting-cells">Segmenting cells</a><ul>
<li><a class="reference internal" href="#single-slide-segmentation">Single slide segmentation</a></li>
<li><a class="reference internal" href="#project-wide-segmentation">Project-wide segmentation</a></li>
<li><a class="reference internal" href="#accessing-segmentation-masks">Accessing segmentation masks</a></li>
<li><a class="reference internal" href="#caveats">Caveats</a></li>
</ul>
</li>
<li><a class="reference internal" href="#extracting-cells-from-slides">Extracting cells from slides</a><ul>
<li><a class="reference internal" href="#from-a-single-slide">From a single slide</a></li>
<li><a class="reference internal" href="#from-all-slides">From all slides</a></li>
</ul>
</li>
<li><a class="reference internal" href="#complete-example">Complete example</a><ul>
<li><a class="reference internal" href="#id1">1. Slideflow Studio</a></li>
<li><a class="reference internal" href="#id2">2. Cell segmentation</a></li>
<li><a class="reference internal" href="#cell-image-extraction">3. Cell image extraction</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>