[78ef36]: / slideflow / norm / torch / cyclegan.py

Download this file

571 lines (476 with data), 22.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
"""CycleGAN-based stain normalization.
Modified from: https://github.com/Boehringer-Ingelheim/stain-transfer
Pretrained weights from: https://osf.io/byf27/
Original license:
BSD 2-Clause License
Copyright (c) 2023, Boehringer Ingelheim
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import torch
import torch.nn as nn
import numpy as np
import functools
import torchvision.transforms as transforms
import slideflow as sf
from torchvision.transforms.functional import center_crop
from typing import Union, Optional, List, Tuple
from slideflow.io.torch import is_whc, as_cwh, as_whc
from slideflow.model.torch import autocast
from slideflow.model import torch_utils
# -----------------------------------------------------------------------------
def download_weights() -> Tuple[str, str]:
"""Download the pretrained checkpoint from HuggingFace."""
from huggingface_hub import hf_hub_download
sf.log.debug(
"Using pretrained CycleGAN weights, available at https://osf.io/byf27/"
)
he2mt = hf_hub_download(
repo_id='jamesdolezal/stain-transfer', filename='cyclegan_he2mt.pth'
)
mt2he = hf_hub_download(
repo_id='jamesdolezal/stain-transfer', filename='cyclegan_mt2he.pth'
)
return he2mt, mt2he
# -----------------------------------------------------------------------------
def get_pad_layer(pad_type):
if (pad_type in ['refl', 'reflect']):
PadLayer = nn.ReflectionPad2d
elif (pad_type in ['repl', 'replicate']):
PadLayer = nn.ReplicationPad2d
elif (pad_type == 'zero'):
PadLayer = nn.ZeroPad2d
else:
print('Pad type [%s] not recognized' % pad_type)
return PadLayer
def get_filter(filt_size=3):
if (filt_size == 1):
a = np.array([1., ])
elif (filt_size == 2):
a = np.array([1., 1.])
elif (filt_size == 3):
a = np.array([1., 2., 1.])
elif (filt_size == 4):
a = np.array([1., 3., 3., 1.])
elif (filt_size == 5):
a = np.array([1., 4., 6., 4., 1.])
elif (filt_size == 6):
a = np.array([1., 5., 10., 10., 5., 1.])
elif (filt_size == 7):
a = np.array([1., 6., 15., 20., 15., 6., 1.])
filt = torch.Tensor(a[:, None] * a[None, :])
filt = filt / torch.sum(filt)
return filt
class ResnetBlock(nn.Module):
"""Define a Resnet block"""
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
"""
Initialize the Resnet block
A resnet block is a conv block with skip connections. We construct a
conv block with build_conv_block function, and implement skip connections
in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
"""
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer,
use_dropout, use_bias)
def build_conv_block(self, dim: int, padding_type: str,
norm_layer: functools.partial, use_dropout: bool,
use_bias: bool):
"""
Construct a convolutional block.
:param dim: number of channels in the conv layer.
:param padding_type: name of padding layer: reflect | replicate | zero
:param norm_layer: normalization layer
:param use_dropout: if use dropout layers.
:param use_bias: if the conv layer uses bias or not
:return: a conv block (with a conv layer, a normalization layer, and a
non-linearity layer (ReLU))
"""
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError(
'padding [%s] is not implemented' % padding_type)
conv_block += [
nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim), nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError(
'padding [%s] is not implemented' % padding_type)
conv_block += [
nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x: torch.Tensor):
"""Forward function (with skip connections)"""
out = x + self.conv_block(x) # add skip connections
return out
class ResnetGenerator(nn.Module):
""" Resnet-based generator that consists of Resnet blocks between a few
downsampling/upsampling operations."""
def __init__(self, input_nc: int, output_nc: int, ngf: int = 64,
norm_layer: functools.partial = nn.BatchNorm2d,
use_dropout: bool = False, n_blocks: int = 6,
padding_type: str = 'reflect', no_antialias: bool = True,
no_antialias_up: bool = True):
"""Construct a Resnet-based generator
:param input_nc: number of channels in input images
:param output_nc: number of channels in output images
:param ngf: number of filters in the last conv layer
:param norm_layer: normalization layer
:param use_dropout: if use dropout layers
:param n_blocks: the number of ResNet blocks
:param padding_type: the name of padding layer in conv layers:
reflect | replicate | zero
:param no_antialias: if true, use stride=2 convs instead of
antialiased-downsampling
:param no_antialias_up: if true, use [upconv(learned filter)] instead of
[upconv(hard-coded [1,3,3,1] filter), conv]
"""
assert (n_blocks >= 0)
super(ResnetGenerator, self).__init__()
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
model = [nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0,
bias=use_bias),
norm_layer(ngf), nn.ReLU(True)]
n_downsampling = 2
for i in range(n_downsampling): # add downsampling layers
mult = 2 ** i
if (no_antialias):
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3,
stride=2, padding=1, bias=use_bias),
norm_layer(ngf * mult * 2), nn.ReLU(True)]
else:
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3,
stride=1, padding=1, bias=use_bias),
norm_layer(ngf * mult * 2), nn.ReLU(True),
Downsample(ngf * mult * 2)]
mult = 2 ** n_downsampling
for i in range(n_blocks): # add ResNet blocks
model += [ResnetBlock(ngf * mult, padding_type=padding_type,
norm_layer=norm_layer,
use_dropout=use_dropout,
use_bias=use_bias)]
for i in range(n_downsampling): # add upsampling layers
mult = 2 ** (n_downsampling - i)
if no_antialias_up:
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
kernel_size=3, stride=2, padding=1,
output_padding=1, bias=use_bias),
norm_layer(int(ngf * mult / 2)),
nn.ReLU(True)]
else:
model += [Upsample(ngf * mult),
nn.Conv2d(ngf * mult, int(ngf * mult / 2),
kernel_size=3, stride=1, padding=1,
bias=use_bias),
norm_layer(int(ngf * mult / 2)), nn.ReLU(True)]
model += [nn.ReflectionPad2d(3)]
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
model += [nn.Tanh()]
self.model = nn.Sequential(*model)
def forward(self, input: torch.Tensor):
"""Standard forward"""
return self.model(input)
class Upsample(nn.Module):
def __init__(self, channels, pad_type='repl', filt_size=4, stride=2):
super(Upsample, self).__init__()
self.filt_size = filt_size
self.filt_odd = np.mod(filt_size, 2) == 1
self.pad_size = int((filt_size - 1) / 2)
self.stride = stride
self.off = int((self.stride - 1) / 2.)
self.channels = channels
filt = get_filter(filt_size=self.filt_size) * (stride ** 2)
self.register_buffer('filt', filt[None, None, :, :].repeat(
(self.channels, 1, 1, 1)))
self.pad = get_pad_layer(pad_type)([1, 1, 1, 1])
def forward(self, inp):
ret_val = nn.functional.conv_transpose2d(
self.pad(inp), self.filt,
stride=self.stride,
padding=1 + self.pad_size,
groups=inp.shape[1])[:, :, 1:, 1:]
if (self.filt_odd):
return ret_val
else:
return ret_val[:, :, :-1, :-1]
class Downsample(nn.Module):
def __init__(self, channels, pad_type='reflect', filt_size=3, stride=2,
pad_off=0):
super(Downsample, self).__init__()
self.filt_size = filt_size
self.pad_off = pad_off
self.pad_sizes = [int(1. * (filt_size - 1) / 2),
int(np.ceil(1. * (filt_size - 1) / 2)),
int(1. * (filt_size - 1) / 2),
int(np.ceil(1. * (filt_size - 1) / 2))]
self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes]
self.stride = stride
self.off = int((self.stride - 1) / 2.)
self.channels = channels
filt = get_filter(filt_size=self.filt_size)
self.register_buffer('filt', filt[None, None, :, :].repeat(
(self.channels, 1, 1, 1)))
self.pad = get_pad_layer(pad_type)(self.pad_sizes)
def forward(self, inp):
if (self.filt_size == 1):
if (self.pad_off == 0):
return inp[:, :, ::self.stride, ::self.stride]
else:
return self.pad(inp)[:, :, ::self.stride, ::self.stride]
else:
return nn.functional.conv2d(self.pad(inp), self.filt,
stride=self.stride, groups=inp.shape[1])
# -----------------------------------------------------------------------------
class CycleGAN(nn.Module):
"""
This class implements the CycleGAN model generator, for image-to-image
translation inference. CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf.
"""
no_antialias = True
no_antialias_up = True
def __init__(self, device=None):
"""
Initializes model and create dataset loaders.
:param conf: See BaseModel.
:param no_antialias: leave as True, do not modify.
:param no_antialias_up: leave as True, do not modify.
"""
super().__init__()
self.net = ResnetGenerator(
3, 3, 64,
norm_layer=functools.partial(
nn.InstanceNorm2d,
affine=False,
track_running_stats=False
),
use_dropout=False,
n_blocks=9,
no_antialias=self.no_antialias,
no_antialias_up=self.no_antialias_up
)
self.device = torch_utils.get_device(device)
self.net.to(self.device)
self.transform = transforms.Compose([
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def forward(self, t: torch.Tensor):
""" Run forward pass."""
return self.net(t.to(self.device))
def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
""" Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
key = keys[i]
if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
if module.__class__.__name__.startswith('InstanceNorm') and (
key == 'running_mean' or key == 'running_var'):
if getattr(module, key) is None:
state_dict.pop('.'.join(keys))
if module.__class__.__name__.startswith('InstanceNorm') and (
key == 'num_batches_tracked'):
state_dict.pop('.'.join(keys))
else:
self.__patch_instance_norm_state_dict(
state_dict, getattr(module, key), keys, i + 1)
def load_weights(self, weights_path: str):
state_dict = torch.load(weights_path, map_location=self.device)
if hasattr(state_dict, '_metadata'):
del state_dict._metadata
# patch InstanceNorm checkpoints prior to 0.4
for key in list(state_dict.keys()):
# need to copy keys here because we mutate in loop
self.__patch_instance_norm_state_dict(state_dict, self.net,
key.split('.'))
self.net.load_state_dict(state_dict)
def to(self, device):
self.device = device
self.net.to(device)
return self
# -----------------------------------------------------------------------------
class CycleGanStainTranslator:
"""Translates images from HE to MT, and vice versa, using two CycleGAN models."""
def __init__(
self,
he2mt_weights: Optional[str] = None,
mt2he_weights: Optional[str] = None,
*,
device = None,
mixed_precision: bool = True,
) -> None:
# Declare types.
self.he2mt: CycleGAN
self.mt2he: CycleGAN
self.he2mt_weights: Optional[str] = None
self.mt2he_weights: Optional[str] = None
if he2mt_weights is None and mt2he_weights is None:
try:
he2mt_weights, mt2he_weights = download_weights()
except Exception as e:
sf.log.warning("Unable to download pretrained weights. Error: {}".format(e))
self.device = device or torch_utils.get_device()
self.mixed_precision = mixed_precision
sf.log.debug("CycleGAN mixed_precision={}".format(self.mixed_precision))
self.build_networks()
self.load_weights(he2mt_weights, mt2he_weights)
self.normalize = transforms.Compose([
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
self.to_tensor = transforms.ToTensor()
def _assert_loaded(self) -> None:
if self.he2mt_weights is None or self.mt2he_weights is None:
raise RuntimeError('Weights not loaded.')
@property
def _device_type(self):
if isinstance(self.device, str):
return self.device
return self.device.type
def build_networks(self) -> None:
self.he2mt = CycleGAN(device=self.device)
self.mt2he = CycleGAN(device=self.device)
def load_weights(self, he2mt_weights: str, mt2he_weights: str) -> None:
self.he2mt_weights = he2mt_weights
self.mt2he_weights = mt2he_weights
if he2mt_weights:
self.he2mt.load_weights(he2mt_weights)
if mt2he_weights:
self.mt2he.load_weights(mt2he_weights)
def to(self, device):
self.device = device
self.he2mt = self.he2mt.to(device)
self.mt2he = self.mt2he.to(device)
return self
def crop_to(self, img: torch.Tensor, shape: List[int]) -> None:
"""Crop an image (or batch of images) to match the target shape."""
# Convert to CWH format.
convert_back_to_whc = is_whc(img)
img = as_cwh(img)
# Get width/height from the target shape.
target_shape = shape if len(shape) == 3 else shape[1:] # Remove batch dim.
if target_shape[0] == 3:
target_shape = target_shape[1:] # If CWH, remove C.
else:
target_shape = target_shape[:2] # If WHC, remove C.
# Crop.
cropped = center_crop(img, target_shape)
# Convert back to WHC format, if needed.
if convert_back_to_whc:
return as_whc(cropped)
return cropped
def he_to_he(self, img: Union[np.ndarray, torch.Tensor]):
"""
Translates an image from HE to HE.
:param img: image to translate, in RGB format.
:return: translated image, in RGB format.
"""
with torch.inference_mode():
mt = self.he_to_mt(img, as_tensor=True)
he = self.mt_to_he(mt, as_tensor=True)
if he.shape != img.shape:
he = self.crop_to(he, img.shape)
if not isinstance(img, torch.Tensor):
he = as_whc(he).cpu().numpy()
return he
def he_to_mt(
self,
img: Union[np.ndarray, torch.Tensor],
as_tensor: bool = False
) -> Union[np.ndarray, torch.Tensor]:
"""
Translates an image from HE to MT.
:param img: image to translate, in RGB format.
:param as_tensor: if True, returns a tensor instead of a numpy array.
:return: translated image, in RGB format.
"""
self._assert_loaded()
if isinstance(img, np.ndarray):
img = self.to_tensor(img)
whc = is_whc(img)
with autocast(self._device_type, mixed_precision=self.mixed_precision):
with torch.inference_mode():
img = self.normalize(as_cwh(img).float()).to(self.he2mt.device)
mt = self.he2mt(img)
mt = torch.clamp((mt + 1) / 2.0 * 255, 0, 255).to(torch.uint8)
if as_tensor:
return mt if not whc else as_whc(mt)
else:
return as_whc(mt).cpu().numpy()
def mt_to_he(
self,
img: Union[np.ndarray, torch.Tensor],
as_tensor: bool = False
) -> Union[np.ndarray, torch.Tensor]:
"""
Translates an image from MT to HE.
:param img: image to translate, in RGB format.
:param as_tensor: if True, returns a tensor instead of a numpy array.
:return: translated image, in RGB format.
"""
self._assert_loaded()
if isinstance(img, np.ndarray):
img = self.to_tensor(img)
whc = is_whc(img)
with autocast(self._device_type, mixed_precision=self.mixed_precision):
with torch.inference_mode():
img = self.normalize(as_cwh(img).float()).to(self.mt2he.device)
he = self.mt2he(img)
he = torch.clamp((he + 1) / 2.0 * 255, 0, 255).to(torch.uint8)
if as_tensor:
return he if not whc else as_whc(he)
else:
return as_whc(he).cpu().numpy()
# -----------------------------------------------------------------------------
class CycleGanNormalizer(CycleGanStainTranslator):
vectorized = True
preferred_device = 'cuda'
preset_tag = 'cyclegan'
def __init__(self) -> None:
"""CycleGAN-based stain normalizer"""
super().__init__()
def _assert_loaded(self) -> None:
if self.he2mt_weights is None or self.mt2he_weights is None:
raise RuntimeError(
'CycleGAN normalizer weights have not been loaded. '
'Load weights by setting the normalizer fit parameters '
'(he2mt_weights, mt2he_weights) to the path of the '
'*.pth weights files.'
)
def fit(self, *args, **kwargs):
self.set_fit(*args, **kwargs)
def fit_preset(self, preset: Optional[str] = None):
pass
def get_fit(self) -> None:
return {
'he2mt_weights': self.he2mt_weights,
'mt2he_weights': self.mt2he_weights,
}
def set_fit(self, he2mt_weights: str, mt2he_weights: str) -> None:
"""Set the normalizer fit to the given values."""
self.load_weights(he2mt_weights, mt2he_weights)
def transform(self, img: torch.Tensor, augment: bool = False) -> torch.Tensor:
"""Normalize a WxHxC H&E image (uint8)."""
_img = torch.unsqueeze(img, 0) if len(img.shape) == 3 else img
transformed = self.he_to_he(_img)
if len(img.shape) == 3:
transformed = torch.squeeze(transformed, 0)
return transformed