<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>slideflow.simclr — slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="slideflow.slide" href="../slide/" />
<link rel="prev" title="slideflow.norm" href="../norm/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation & heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> >
</li>
<li>slideflow.simclr</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/simclr.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="slideflow-simclr">
<h1>slideflow.simclr<a class="headerlink" href="#slideflow-simclr" title="Permalink to this heading">¶</a></h1>
<p>This module contains utility functions for training a SimCLR model. Please see
<a class="reference internal" href="../ssl/#simclr-ssl"><span class="std std-ref">Self-Supervised Learning (SSL)</span></a> for more information on the high-level API and recommended use.</p>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.simclr.get_args">
<span class="sig-name descname"><span class="pre">get_args</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/simclr/simclr/tf2/utils/#get_args"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.simclr.get_args" title="Permalink to this definition">¶</a></dt>
<dd><p>Configure a <code class="docutils literal notranslate"><span class="pre">SimCLR_Args</span></code> object for training SimCLR.</p>
<dl class="field-list simple">
<dt class="field-odd">Keyword Arguments<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>**kwargs</strong> – Please see the <a class="reference internal" href="#slideflow.simclr.SimCLR_Args" title="slideflow.simclr.SimCLR_Args"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.simclr.SimCLR_Args</span></code></a> documentation
for information on available parameters.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>slideflow.simclr.SimCLR_Args</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.simclr.load">
<span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">as_pretrained</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/simclr/simclr/tf2/#load"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.simclr.load" title="Permalink to this definition">¶</a></dt>
<dd><p>Load a SavedModel or checkpoint for inference.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>path</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Path to saved model.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>Tensorflow SimCLR model.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.simclr.load_model_args">
<span class="sig-name descname"><span class="pre">load_model_args</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model_path</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_missing</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/simclr/simclr/tf2/utils/#load_model_args"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.simclr.load_model_args" title="Permalink to this definition">¶</a></dt>
<dd><p>Load args.json associated with a given SimCLR model or checkpoint.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>model_path</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Path to SimCLR model or checkpoint.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>Dictionary of contents of args.json file. If file is not found and
<cite>ignore_missing</cite> is False, will return None. If <cite>ignore_missing</cite> is
True, will raise an OSError.</p>
</dd>
<dt class="field-odd">Raises<span class="colon">:</span></dt>
<dd class="field-odd"><p><a class="reference external" href="https://docs.python.org/3/library/exceptions.html#OSError" title="(in Python v3.12)"><strong>OSError</strong></a> – If args.json cannot be found and <cite>ignore_missing</cite> is False.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="slideflow.simclr.run_simclr">
<span class="sig-name descname"><span class="pre">run_simclr</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">builder</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">model_dir</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache_dataset</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpoint_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">use_tpu</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tpu_name</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tpu_zone</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">gcp_project</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/simclr/simclr/tf2/#run_simclr"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.simclr.run_simclr" title="Permalink to this definition">¶</a></dt>
<dd><p>Train a SimCLR model.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>simCLR_args</strong> (<em>SimpleNamespace</em>) – SimCLR arguments, as provided by
<a class="reference internal" href="#slideflow.simclr.get_args" title="slideflow.simclr.get_args"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.simclr.get_args()</span></code></a>.</p></li>
<li><p><strong>builder</strong> (<a class="reference internal" href="#slideflow.simclr.DatasetBuilder" title="slideflow.simclr.DatasetBuilder"><em>DatasetBuilder</em></a><em>, </em><em>optional</em>) – Builder for preparing SimCLR input
pipelines. If None, will build using TensorflowDatasets and
<cite>simclr_args.dataset</cite>.</p></li>
<li><p><strong>model_dir</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Model directory for training.</p></li>
<li><p><strong>cache_dataset</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Whether to cache the entire dataset in memory. If
the dataset is ImageNet, this is a very bad idea, but for smaller datasets
it can improve performance</p></li>
<li><p><strong>checkpoint_path</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Loading from the given checkpoint for fine-tuning if
a finetuning checkpoint does not already exist in model_dir</p></li>
<li><p><strong>use_tpu</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Whether to run on TPU.</p></li>
<li><p><strong>tpu_name</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – The Cloud TPU to use for training. This should be either the
name used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470
url</p></li>
<li><p><strong>tpu_zone</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – GCE zone where the Cloud TPU is located in. If not
specified, we will attempt to automatically detect the GCE project from
metadata</p></li>
<li><p><strong>gcp_project</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Project name for the Cloud TPU-enabled project. If not
specified, we will attempt to automatically detect the GCE project from
metadata</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="slideflow.simclr.SimCLR">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">SimCLR</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/simclr/simclr/tf2/model/#SimCLR"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.simclr.SimCLR" title="Permalink to this definition">¶</a></dt>
<dd><p>Resnet model with projection or supervised layer.</p>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="slideflow.simclr.SimCLR_Args">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">SimCLR_Args</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learning_rate</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.075</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">learning_rate_scaling</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'sqrt'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">warmup_epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">weight_decay</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.0001</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_norm_decay</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.9</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_batch_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">512</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'train'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_steps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_steps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_batch_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">256</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpoint_epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpoint_steps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eval_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'validation'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dataset</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'imagenet2012'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mode</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'train'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">train_mode</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'pretrain'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lineareval_while_pretraining</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">zero_init_logits_layer</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">fine_tune_after_block</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">-1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">master</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_dir</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">optimizer</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'lars'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">momentum</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.9</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">keep_checkpoint_max</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">temperature</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">hidden_norm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">proj_head_mode</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'nonlinear'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">proj_out_dim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">128</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">num_proj_layers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ft_proj_selector</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">global_bn</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">width_multiplier</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">resnet_depth</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">50</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sk_ratio</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">se_ratio</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">image_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">224</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">color_jitter_strength</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">use_blur</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">num_classes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">stain_augment</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/simclr/simclr/tf2/utils/#SimCLR_Args"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.simclr.SimCLR_Args" title="Permalink to this definition">¶</a></dt>
<dd><p>SimCLR arguments.</p>
<dl class="simple">
<dt>A class containg all default - if not overwritten at initialization -</dt><dd><p>SimCLR arguments.</p>
</dd>
</dl>
<dl class="field-list simple">
<dt class="field-odd">Keyword Arguments<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>learning_rate</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.12)"><em>float</em></a>) – Initial learning rate per batch size of 256.</p></li>
<li><p><strong>learning_rate_scaling</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – How to scale the learning rate as a
function of batch size. ‘linear’ or ‘sqrt’.</p></li>
<li><p><strong>warmup_epochs</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of epochs of warmup.</p></li>
<li><p><strong>weight_decay</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.12)"><em>float</em></a>) – Amount of weight decay to use.</p></li>
<li><p><strong>batch_norm_decay</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.12)"><em>float</em></a>) – Batch norm decay parameter.</p></li>
<li><p><strong>train_batch_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Batch size for training.</p></li>
<li><p><strong>train_split</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Split for training</p></li>
<li><p><strong>train_epoch</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of epochs to train for.</p></li>
<li><p><strong>train_step</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of steps to train for. If provided, overrides
train_epochs.</p></li>
<li><p><strong>eval_steps</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of steps to eval for. If not provided, evals
over entire dataset.</p></li>
<li><p><strong>eval_batch_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Batch size for eval.</p></li>
<li><p><strong>checkpoint_epochs</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of epochs between
checkpoints/summaries.</p></li>
<li><p><strong>checkpoint_steps</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of steps between checkpoints/summaries.
If provided, overrides checkpoint_epochs.</p></li>
<li><p><strong>eval_split</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Split for evaluation.</p></li>
<li><p><strong>dataset</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Name of a dataset.</p></li>
<li><p><strong>mode</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Whether to perform training or evaluation. ‘train’,
‘eval’, or ‘train_then_eval’</p></li>
<li><p><strong>train_mode</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – The train mode controls different objectives and
trainable components.</p></li>
<li><p><strong>lineareval_while_pretraining</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Whether to finetune supervised
head while pretraining. ‘pretrain’ or ‘finetune’</p></li>
<li><p><strong>zero_init_logits_layer</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – If True, zero initialize layers after
avg_pool for supervised learning.</p></li>
<li><p><strong>fine_tune_after_block</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – The layers after which block that we will
fine-tune. -1 means fine-tuning everything. 0 means fine-tuning
after stem block. 4 means fine-tuning just the linear head.</p></li>
<li><p><strong>master</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Address/name of the TensorFlow master to use.
By default, use an in-process master.</p></li>
<li><p><strong>data_dir</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Directory where dataset is stored.</p></li>
<li><p><strong>optimizer</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – Optimizer to use. ‘momentum’, ‘adam’, ‘lars’</p></li>
<li><p><strong>momentum</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.12)"><em>float</em></a>) – Momentum parameter.</p></li>
<li><p><strong>keep_checkpoint_max</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Maximum number of checkpoints to keep.</p></li>
<li><p><strong>temperature</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.12)"><em>float</em></a>) – Temperature parameter for contrastive loss.</p></li>
<li><p><strong>hidden_norm</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Temperature parameter for contrastive loss.</p></li>
<li><p><strong>proj_head_mode</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a>) – How the head projection is done. ‘none’,
‘linear’, ‘nonlinear’</p></li>
<li><p><strong>proj_out_dim</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of head projection dimension.</p></li>
<li><p><strong>num_proj_layers</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of non-linear head layers.</p></li>
<li><p><strong>ft_proj_selector</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Which layer of the projection head to use
during fine-tuning. 0 means no projection head, and -1 means the
final layer.</p></li>
<li><p><strong>global_bn</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Whether to aggregate BN statistics across
distributed cores.</p></li>
<li><p><strong>width_multiplier</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Multiplier to change width of network.</p></li>
<li><p><strong>resnet_depth</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Depth of ResNet.</p></li>
<li><p><strong>sk_ratio</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.12)"><em>float</em></a>) – If it is bigger than 0, it will enable SK.
Recommendation: 0.0625.</p></li>
<li><p><strong>se_ratio</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.12)"><em>float</em></a>) – If it is bigger than 0, it will enable SE.</p></li>
<li><p><strong>image_size</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Input image size.</p></li>
<li><p><strong>color_jitter_strength</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.12)"><em>float</em></a>) – The strength of color jittering.</p></li>
<li><p><strong>use_blur</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><em>bool</em></a>) – Whether or not to use Gaussian blur for augmentation
during pretraining.</p></li>
<li><p><strong>num_classes</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a>) – Number of classes for the supervised head.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="slideflow.simclr.DatasetBuilder">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">DatasetBuilder</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">train_dts</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_dts</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_dts</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_kwargs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">steps_per_epoch_override</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">normalizer</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">normalizer_source</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dataset_kwargs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/slideflow/simclr/simclr/tf2/data/#DatasetBuilder"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#slideflow.simclr.DatasetBuilder" title="Permalink to this definition">¶</a></dt>
<dd><p>Build a training/validation dataset pipeline for SimCLR.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>train_dts</strong> (<em>sf.Dataset</em><em>, </em><em>optional</em>) – Training dataset.</p></li>
<li><p><strong>val_dts</strong> (<em>sf.Dataset</em><em>, </em><em>optional</em>) – Optional validation dataset.</p></li>
<li><p><strong>test_dts</strong> (<em>sf.Dataset</em><em>, </em><em>optional</em>) – Optional held-out test set.</p></li>
</ul>
</dd>
<dt class="field-even">Keyword Arguments<span class="colon">:</span></dt>
<dd class="field-even"><ul class="simple">
<li><p><strong>labels</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><em>str</em></a><em> or </em><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a>) – Labels for training the supervised head.
Can be a name of an outcome (str) or a dict mapping slide names
to labels.</p></li>
<li><p><strong>val_kwargs</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>optional</em>) – Optional keyword arguments for
generating a validation dataset from <code class="docutils literal notranslate"><span class="pre">train_dts</span></code> via
<code class="docutils literal notranslate"><span class="pre">train_dts.split()</span></code>. Incompatible with <code class="docutils literal notranslate"><span class="pre">val_dts</span></code>.</p></li>
<li><p><strong>steps_per_epoch_override</strong> (<a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.12)"><em>int</em></a><em>, </em><em>optional</em>) – Override the number
of steps per epoch.</p></li>
<li><p><strong>dataset_kwargs</strong> (<a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.12)"><em>dict</em></a><em>, </em><em>optional</em>) – Keyword arguments passed to the
<a class="reference internal" href="../dataset/#slideflow.Dataset.tensorflow" title="slideflow.Dataset.tensorflow"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Dataset.tensorflow()</span></code></a> method when creating
the input pipeline.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../slide/" class="btn btn-neutral float-right" title="slideflow.slide" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../norm/" class="btn btn-neutral" title="slideflow.norm" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">slideflow.simclr</a><ul>
<li><a class="reference internal" href="#slideflow.simclr.get_args"><code class="docutils literal notranslate"><span class="pre">get_args()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.simclr.load"><code class="docutils literal notranslate"><span class="pre">load()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.simclr.load_model_args"><code class="docutils literal notranslate"><span class="pre">load_model_args()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.simclr.run_simclr"><code class="docutils literal notranslate"><span class="pre">run_simclr()</span></code></a></li>
<li><a class="reference internal" href="#slideflow.simclr.SimCLR"><code class="docutils literal notranslate"><span class="pre">SimCLR</span></code></a></li>
<li><a class="reference internal" href="#slideflow.simclr.SimCLR_Args"><code class="docutils literal notranslate"><span class="pre">SimCLR_Args</span></code></a></li>
<li><a class="reference internal" href="#slideflow.simclr.DatasetBuilder"><code class="docutils literal notranslate"><span class="pre">DatasetBuilder</span></code></a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>