<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Overview — slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Quickstart" href="../quickstart/" />
<link rel="prev" title="Installation" href="../installation/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation/">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation & heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> >
</li>
<li>Overview</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/overview.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="overview">
<h1>Overview<a class="headerlink" href="#overview" title="Permalink to this heading">¶</a></h1>
<p>Slideflow provides tools for easily building and testing a variety of deep learning models for digital pathology.</p>
<p>This section provides a high-level overview of the most common application: building and testing a weakly supervised predictive model. Slideflow supports many other tasks, including <a class="reference internal" href="../mil/#mil"><span class="std std-ref">multiple-instance learning (MIL)</span></a>, <a class="reference internal" href="../ssl/#simclr-ssl"><span class="std std-ref">self-supervised learning (SSL)</span></a>, <a class="reference internal" href="../stylegan/#stylegan"><span class="std std-ref">generative adversarial networks (GANs)</span></a>, <a class="reference internal" href="../segmentation/#segmentation"><span class="std std-ref">tissue</span></a> and <a class="reference internal" href="../cellseg/#cellseg"><span class="std std-ref">cell</span></a> segmentation, and <a class="reference internal" href="../studio/#studio"><span class="std std-ref">deployment & visualization</span></a>, which are discussed in subsequent sections.</p>
<figure class="align-default" id="id1">
<img alt="../_images/overview.png" src="../_images/overview.png" />
<figcaption>
<p><span class="caption-text"><em>High-level overview of model building.</em></span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p>
</figcaption>
</figure>
<p>The pipeline for a deep learning classification experiment is separated into three phases.</p>
<ol class="arabic simple">
<li><p><strong>Tile extraction</strong> - annotate slides with regions of interest (ROIs) [<em>optional</em>] and extract image tiles from whole-slide images.</p></li>
<li><p><strong>Model training</strong> - determine model parameters, train a model, and evaluate the model on a held-out test set.</p></li>
<li><p><strong>Explainability</strong> - generate predictive heatmaps and analyze learned image features.</p></li>
</ol>
<div class="line-block">
<div class="line"><br /></div>
</div>
<p>A brief introduction to the steps needed to execute a basic experiment is provided below. Each process will be described in more detail in the following sections.</p>
<section id="step-1-prepare-a-dataset">
<h2>Step 1: Prepare a dataset<a class="headerlink" href="#step-1-prepare-a-dataset" title="Permalink to this heading">¶</a></h2>
<ul class="simple">
<li><p><strong>Extract tiles</strong>. <a class="reference internal" href="../slide_processing/#filtering"><span class="std std-ref">Tiles are extracted</span></a> from slides at a given magnification size in microns (or a magnification layer, such as “10x”), and saved at a given resolution in pixels. The optimal extraction size in both microns and pixels will depend on your dataset and model architecture. Poor quality tiles - including background tiles or tiles with high whitespace content - can be discarded with quality control methods. Tiles will be stored as TFRecords, a binary file format used to improve dataset reading performance during training. Each slide will have its own TFRecord file containing its extracted tiles.</p></li>
<li><p><strong>Set aside final evaluation set</strong>. <a class="reference internal" href="../datasets_and_val/#datasets-and-validation"><span class="std std-ref">Split the dataset</span></a> into a training/validation set and held-out test set.</p></li>
<li><p><strong>Determing validation plan</strong>. By default, three-fold cross-validation will be performed during training. Many other validation strategies are also supported (<a class="reference internal" href="../datasets_and_val/#validation-planning"><span class="std std-ref">Training/Validation Splitting</span></a>).</p></li>
</ul>
</section>
<section id="step-2-train-a-model">
<h2>Step 2: Train a model<a class="headerlink" href="#step-2-train-a-model" title="Permalink to this heading">¶</a></h2>
<ul class="simple">
<li><p><strong>Choose model type</strong>. Choose the endpoint (e.g. classification, regression, time-to-event) and type of model (tile-based or multiple-instance learning).</p></li>
<li><p><strong>Set hyperparameters</strong>. Choose a model architecture (e.g. InceptionV3, VGG16, ResNet, etc.) and a set of hyperparameters (e.g. batch size, learning rate, etc.). This can be done manually, or <a class="reference internal" href="../training/#hyperparameter-optimization"><span class="std std-ref">hyperparameters can be optimized</span></a> via grid search or Bayesian optimization.</p></li>
<li><p><strong>Initiate training</strong>. <a class="reference internal" href="../training/#training"><span class="std std-ref">Train your model</span></a>, taking note of training and validation performance (e.g. accuracy, AUROC, AP, R-squared, C-index).</p></li>
</ul>
</section>
<section id="step-3-evaluate-the-model">
<h2>Step 3: Evaluate the model<a class="headerlink" href="#step-3-evaluate-the-model" title="Permalink to this heading">¶</a></h2>
<ul class="simple">
<li><p><strong>Evaluate on held-out set</strong>: <a class="reference internal" href="../evaluation/#evaluation"><span class="std std-ref">Evaluate your final model</span></a> model on the held-out dataset.</p></li>
</ul>
</section>
<section id="step-4-generate-heatmaps">
<h2>Step 4: Generate heatmaps<a class="headerlink" href="#step-4-generate-heatmaps" title="Permalink to this heading">¶</a></h2>
<ul class="simple">
<li><p><strong>Generate heatmaps</strong>: <a class="reference internal" href="../evaluation/#generate-heatmaps"><span class="std std-ref">Generate heatmaps</span></a> of predictions across slides in the held-out dataset to assist with interpretability. For MIL models, heatmaps of both predictions and attention can be generated.</p></li>
</ul>
<img alt="../_images/heatmap_example.png" src="../_images/heatmap_example.png" />
</section>
<section id="step-5-make-a-mosaic-map">
<h2>Step 5: Make a Mosaic map<a class="headerlink" href="#step-5-make-a-mosaic-map" title="Permalink to this heading">¶</a></h2>
<ul class="simple">
<li><p><strong>Generate a mosaic map</strong>: <a class="reference internal" href="../posthoc/#mosaic-map"><span class="std std-ref">Create a mosaic map</span></a>, which visually illustrates the latent space of your trained model and held-out dataset, to assist with interpretability.</p></li>
</ul>
<img alt="../_images/mosaic_example.png" src="../_images/mosaic_example.png" />
</section>
<section id="step-6-live-visualization">
<h2>Step 6: Live visualization<a class="headerlink" href="#step-6-live-visualization" title="Permalink to this heading">¶</a></h2>
<ul class="simple">
<li><p><strong>Deploy the model</strong>: Finally, use a trained model to visualize predictions for whole-slide images with the interactive tool <a class="reference internal" href="../studio/#studio"><span class="std std-ref">Slideflow Studio</span></a>. This whole-slide image viewer includes deep learning tools enabling you to visualize model predictions on whole-slide images, standard JPG/PNG files, real-time camera feeds, and even Generative Adversarial Network (GAN)-generated images.</p></li>
</ul>
<img alt="../_images/workbench_preview.png" src="../_images/workbench_preview.png" />
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../quickstart/" class="btn btn-neutral float-right" title="Quickstart" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../installation/" class="btn btn-neutral" title="Installation" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Overview</a><ul>
<li><a class="reference internal" href="#step-1-prepare-a-dataset">Step 1: Prepare a dataset</a></li>
<li><a class="reference internal" href="#step-2-train-a-model">Step 2: Train a model</a></li>
<li><a class="reference internal" href="#step-3-evaluate-the-model">Step 3: Evaluate the model</a></li>
<li><a class="reference internal" href="#step-4-generate-heatmaps">Step 4: Generate heatmaps</a></li>
<li><a class="reference internal" href="#step-5-make-a-mosaic-map">Step 5: Make a Mosaic map</a></li>
<li><a class="reference internal" href="#step-6-live-visualization">Step 6: Live visualization</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>