<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Evaluation — slideflow 3.0.0 documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="../_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index" href="../genindex/" />
<link rel="search" title="Search" href="../search/" />
<link rel="next" title="Layer Activations" href="../posthoc/" />
<link rel="prev" title="Training" href="../training/" />
<script src="../_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="../_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/katex@0.10.0/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
<script defer data-domain="slideflow.dev" src="https://plausible.io/js/script.js"></script>
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://slideflow.dev" aria-label="Slideflow"></a>
<div class="main-menu">
<ul>
<li class="active">
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">GitHub</a>
</li>
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
3.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search/" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<p class="caption" role="heading"><span class="caption-text">Introduction</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation/">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quickstart/">Quickstart</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project_setup/">Setting up a Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets_and_val/">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_processing/">Slide Processing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../training/">Training</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Evaluation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../posthoc/">Layer Activations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../uq/">Uncertainty Quantification</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/">Generating Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil/">Multiple-Instance Learning (MIL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../ssl/">Self-Supervised Learning (SSL)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stylegan/">Generative Networks (GANs)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../saliency/">Saliency Maps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../segmentation/">Tissue Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../cellseg/">Cell Segmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_loops/">Custom Training Loops</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio/">Slideflow Studio: Live Visualization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../troubleshooting/">Troubleshooting</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Developer Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tfrecords/">TFRecords: Reading and Writing</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataloaders/">Dataloaders: Sampling and Augmentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../custom_extractors/">Custom Feature Extractors</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tile_labels/">Strong Supervision with Tile Labels</a></li>
<li class="toctree-l1"><a class="reference internal" href="../plugins/">Creating a Slideflow Plugin</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../slideflow/">slideflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../project/">slideflow.Project</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset/">slideflow.Dataset</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dataset_features/">slideflow.DatasetFeatures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../heatmap/">slideflow.Heatmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_params/">slideflow.ModelParams</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mosaic/">slideflow.Mosaic</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slidemap/">slideflow.SlideMap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../biscuit/">slideflow.biscuit</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slideflow_cellseg/">slideflow.cellseg</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io/">slideflow.io</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_tensorflow/">slideflow.io.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../io_torch/">slideflow.io.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../gan/">slideflow.gan</a></li>
<li class="toctree-l1"><a class="reference internal" href="../grad/">slideflow.grad</a></li>
<li class="toctree-l1"><a class="reference internal" href="../mil_module/">slideflow.mil</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model/">slideflow.model</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_tensorflow/">slideflow.model.tensorflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../model_torch/">slideflow.model.torch</a></li>
<li class="toctree-l1"><a class="reference internal" href="../norm/">slideflow.norm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../simclr/">slideflow.simclr</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide/">slideflow.slide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../slide_qc/">slideflow.slide.qc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../stats/">slideflow.stats</a></li>
<li class="toctree-l1"><a class="reference internal" href="../util/">slideflow.util</a></li>
<li class="toctree-l1"><a class="reference internal" href="../studio_module/">slideflow.studio</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Tutorials</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../tutorial1/">Tutorial 1: Model training (simple)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial2/">Tutorial 2: Model training (advanced)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial3/">Tutorial 3: Using a custom architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial4/">Tutorial 4: Model evaluation & heatmaps</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial5/">Tutorial 5: Creating a mosaic map</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial6/">Tutorial 6: Custom slide filtering</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial7/">Tutorial 7: Training with custom augmentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorial8/">Tutorial 8: Multiple-Instance Learning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="../">
Docs
</a> >
</li>
<li>Evaluation</li>
<li class="pytorch-breadcrumbs-aside">
<a href="../_sources/evaluation.rst.txt" rel="nofollow"><img src="../_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<section id="evaluation">
<span id="id1"></span><h1>Evaluation<a class="headerlink" href="#evaluation" title="Permalink to this heading">¶</a></h1>
<p>Slideflow includes several tools for evaluating trained models. In the next sections, we’ll review how to evaluate a model on a held-out test set, generate predictions without ground-truth labels, and visualize predictions with heatmaps.</p>
<section id="evaluating-a-test-set">
<h2>Evaluating a test set<a class="headerlink" href="#evaluating-a-test-set" title="Permalink to this heading">¶</a></h2>
<p>The <a class="reference internal" href="../project/#slideflow.Project.evaluate" title="slideflow.Project.evaluate"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.evaluate()</span></code></a> provides an easy interface for evaluating model performance on a held-out test set. Locate the saved model to evaluate (which will be in the project <code class="docutils literal notranslate"><span class="pre">models/</span></code> folder). <a class="reference internal" href="../training/#training-with-project"><span class="std std-ref">As with training</span></a>, the dataset to evaluate can be specified using either the <code class="docutils literal notranslate"><span class="pre">filters</span></code> or <code class="docutils literal notranslate"><span class="pre">dataset</span></code> arguments. If neither is provided, all slides in the project will be evaluated.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Method 1: specifying filters</span>
<span class="n">P</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s2">"/path/to/trained_model_epoch1"</span><span class="p">,</span>
<span class="n">outcomes</span><span class="o">=</span><span class="s2">"tumor_type"</span><span class="p">,</span>
<span class="n">filters</span><span class="o">=</span><span class="p">{</span><span class="s2">"dataset"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"test"</span><span class="p">]}</span>
<span class="p">)</span>
<span class="c1"># Method 2: specify a dataset</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="s1">'10x'</span><span class="p">)</span>
<span class="n">test_dataset</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">filter</span><span class="p">({</span><span class="s2">"dataset"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"test"</span><span class="p">]})</span>
<span class="n">P</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s2">"/path/to/trained_model_epoch1"</span><span class="p">,</span>
<span class="n">outcomes</span><span class="o">=</span><span class="s2">"tumor_type"</span><span class="p">,</span>
<span class="n">dataset</span><span class="o">=</span><span class="n">test_dataset</span>
<span class="p">)</span>
</pre></div>
</div>
<p>Results are returned from the <code class="docutils literal notranslate"><span class="pre">Project.evaluate()</span></code> function as a dictionary and saved in the project evaluation directory. Tile-, slide-, and patient- level predictions are also saved in the corresponding project evaluation folder, <code class="docutils literal notranslate"><span class="pre">eval/</span></code>.</p>
</section>
<section id="generating-predictions">
<h2>Generating predictions<a class="headerlink" href="#generating-predictions" title="Permalink to this heading">¶</a></h2>
<section id="for-a-dataset">
<h3>For a dataset<a class="headerlink" href="#for-a-dataset" title="Permalink to this heading">¶</a></h3>
<p><a class="reference internal" href="../project/#slideflow.Project.predict" title="slideflow.Project.predict"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.predict()</span></code></a> provides an interface for generating model predictions on an entire dataset. As above, locate the saved model from which to generate predictions, and specify the dataset with either <code class="docutils literal notranslate"><span class="pre">filters</span></code> or <code class="docutils literal notranslate"><span class="pre">dataset</span></code> arguments.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">dfs</span> <span class="o">=</span> <span class="n">P</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="s2">"/path/to/trained_model_epoch1"</span><span class="p">,</span>
<span class="n">filters</span><span class="o">=</span><span class="p">{</span><span class="s2">"dataset"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"test"</span><span class="p">]}</span>
<span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">dfs</span><span class="p">[</span><span class="s1">'patient'</span><span class="p">])</span>
</pre></div>
</div>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span> patient ... cohort-y_pred1
0 TCGA-05-4244-01Z-00-DX1... ... 0.032608
1 TCGA-05-4245-01Z-00-DX1... ... 0.216634
2 TCGA-05-4249-01Z-00-DX1... ... 0.000858
3 TCGA-05-4250-01Z-00-DX1... ... 0.015915
4 TCGA-05-4382-01Z-00-DX1... ... 0.020700
.. ... ... ...
936 TCGA-O2-A52S-01Z-00-DX1... ... 0.983500
937 TCGA-O2-A52V-01Z-00-DX1... ... 0.773328
938 TCGA-O2-A52W-01Z-00-DX1... ... 0.858558
939 TCGA-S2-AA1A-01Z-00-DX1... ... 0.000212
940 TCGA-XC-AA0X-01Z-00-DX1... ... 0.632612
</pre></div>
</div>
<p>Results are returned as a dictionary of pandas DataFrames (with the keys <code class="docutils literal notranslate"><span class="pre">'tile'</span></code>, <code class="docutils literal notranslate"><span class="pre">'slide'</span></code>, and <code class="docutils literal notranslate"><span class="pre">'patient'</span></code> for each level of prediction) and saved in the project evaluation directory, <code class="docutils literal notranslate"><span class="pre">eval/</span></code>.</p>
</section>
<section id="for-a-single-slide">
<h3>For a single slide<a class="headerlink" href="#for-a-single-slide" title="Permalink to this heading">¶</a></h3>
<p>You can also generate predictions for a single slide with either <a class="reference internal" href="../slide/#slideflow.slide.predict" title="slideflow.slide.predict"><code class="xref py py-func docutils literal notranslate"><span class="pre">slideflow.slide.predict()</span></code></a> or <a class="reference internal" href="../slide/#slideflow.WSI.predict" title="slideflow.WSI.predict"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.WSI.predict()</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">slideflow</span> <span class="k">as</span> <span class="nn">sf</span>
<span class="n">slide</span> <span class="o">=</span> <span class="s1">'/path/to/slide.svs'</span>
<span class="n">model</span> <span class="o">=</span> <span class="s1">'/path/to/model_epoch1'</span>
<span class="n">sf</span><span class="o">.</span><span class="n">slide</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">slide</span><span class="p">,</span> <span class="n">model</span><span class="p">)</span>
</pre></div>
</div>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>array([0.84378019, 0.15622007])
</pre></div>
</div>
<p>The returned array has the shape <code class="docutils literal notranslate"><span class="pre">(num_classes,)</span></code>, indicating the whole-slide prediction for each outcome category. If the model was trained with uncertainty quantification, this function will return two arrays; the first with predictions, the second with estimated uncertainty.</p>
</section>
</section>
<section id="heatmaps">
<span id="generate-heatmaps"></span><h2>Heatmaps<a class="headerlink" href="#heatmaps" title="Permalink to this heading">¶</a></h2>
<section id="id2">
<h3>For a dataset<a class="headerlink" href="#id2" title="Permalink to this heading">¶</a></h3>
<p>Predictive heatmaps can be created for an entire dataset using <a class="reference internal" href="../project/#slideflow.Project.generate_heatmaps" title="slideflow.Project.generate_heatmaps"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Project.generate_heatmaps()</span></code></a>. Heatmaps will be saved and exported in the project directory. See the linked API documentation for arguments and customization.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">P</span><span class="o">.</span><span class="n">generate_heatmaps</span><span class="p">(</span><span class="n">model</span><span class="o">=</span><span class="s2">"/path/to/trained_model_epoch1"</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="id3">
<h3>For a single slide<a class="headerlink" href="#id3" title="Permalink to this heading">¶</a></h3>
<p><a class="reference internal" href="../heatmap/#slideflow.Heatmap" title="slideflow.Heatmap"><code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.Heatmap</span></code></a> provides more granular control for calculating and displaying a heatmap for a given slide. The required arguments are:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">slide</span></code>: Either a path to a slide, or a <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.WSI</span></code> object.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">model</span></code>: Path to a saved Slideflow model.</p></li>
</ul>
<p>Additional keyword arguments can be used to customize and optimize the heatmap. In this example, we’ll increase the batch size to 64 and allow multiprocessing by setting <code class="docutils literal notranslate"><span class="pre">num_processes</span></code> equal to our CPU core count, 16.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">heatmap</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Heatmap</span><span class="p">(</span>
<span class="n">slide</span><span class="o">=</span><span class="s1">'/path/to/slide.svs'</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="s1">'/path/to/model'</span>
<span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">num_processes</span><span class="o">=</span><span class="mi">16</span>
<span class="p">)</span>
</pre></div>
</div>
<p>If <code class="docutils literal notranslate"><span class="pre">slide</span></code> is a <code class="xref py py-class docutils literal notranslate"><span class="pre">slideflow.WSI</span></code>, the heatmap will be calculated only within non-masked areas and ROIs, if applicable.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">slideflow.slide</span> <span class="kn">import</span> <span class="n">qc</span>
<span class="c1"># Prepare the slide</span>
<span class="n">wsi</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">WSI</span><span class="p">(</span><span class="s1">'slide.svs'</span><span class="p">,</span> <span class="n">tile_px</span><span class="o">=</span><span class="mi">299</span><span class="p">,</span> <span class="n">tile_um</span><span class="o">=</span><span class="mi">302</span><span class="p">,</span> <span class="n">rois</span><span class="o">=</span><span class="s1">'/path'</span><span class="p">)</span>
<span class="n">wsi</span><span class="o">.</span><span class="n">qc</span><span class="p">([</span><span class="n">qc</span><span class="o">.</span><span class="n">Otsu</span><span class="p">(),</span> <span class="n">qc</span><span class="o">.</span><span class="n">Gaussian</span><span class="p">()])</span>
<span class="c1"># Generate a heatmap</span>
<span class="n">heatmap</span> <span class="o">=</span> <span class="n">sf</span><span class="o">.</span><span class="n">Heatmap</span><span class="p">(</span>
<span class="n">slide</span><span class="o">=</span><span class="n">wsi</span><span class="p">,</span>
<span class="n">model</span><span class="o">=</span><span class="s1">'/path/to/model'</span>
<span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="n">num_processes</span><span class="o">=</span><span class="mi">16</span>
<span class="p">)</span>
</pre></div>
</div>
<p>If <code class="docutils literal notranslate"><span class="pre">slide</span></code> is a path to a slide, Regions of Interest can be provided through the optional <code class="docutils literal notranslate"><span class="pre">roi_dir</span></code> or <code class="docutils literal notranslate"><span class="pre">rois</span></code> arguments.</p>
<p>Once generated, heatmaps can be rendered and displayed (ie. in a Jupyter notebook) with <a class="reference internal" href="../heatmap/#slideflow.Heatmap.plot" title="slideflow.Heatmap.plot"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Heatmap.plot()</span></code></a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">heatmap</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">class_idx</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'inferno'</span><span class="p">)</span>
</pre></div>
</div>
<p>Insets showing zoomed-in portions of the heatmap can be added with <a class="reference internal" href="../heatmap/#slideflow.Heatmap.add_inset" title="slideflow.Heatmap.add_inset"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Heatmap.add_inset()</span></code></a>:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">heatmap</span><span class="o">.</span><span class="n">add_inset</span><span class="p">(</span><span class="n">zoom</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">x</span><span class="o">=</span><span class="p">(</span><span class="mi">10000</span><span class="p">,</span> <span class="mi">10500</span><span class="p">),</span> <span class="n">y</span><span class="o">=</span><span class="p">(</span><span class="mi">2500</span><span class="p">,</span> <span class="mi">3000</span><span class="p">),</span> <span class="n">loc</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">axes</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">heatmap</span><span class="o">.</span><span class="n">add_inset</span><span class="p">(</span><span class="n">zoom</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">x</span><span class="o">=</span><span class="p">(</span><span class="mi">12000</span><span class="p">,</span> <span class="mi">12500</span><span class="p">),</span> <span class="n">y</span><span class="o">=</span><span class="p">(</span><span class="mi">7500</span><span class="p">,</span> <span class="mi">8000</span><span class="p">),</span> <span class="n">loc</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">axes</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">heatmap</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">class_idx</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">mpp</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<img alt="../_images/heatmap_inset.jpg" src="../_images/heatmap_inset.jpg" />
<div class="line-block">
<div class="line"><br /></div>
</div>
<p>Save rendered heatmaps for each outcome category with <a class="reference internal" href="../heatmap/#slideflow.Heatmap.save" title="slideflow.Heatmap.save"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Heatmap.save()</span></code></a>. The spatial map of predictions, as calculated across the input slide, can be accessed through <code class="docutils literal notranslate"><span class="pre">Heatmap.predictions</span></code>. You can save the numpy array with calculated predictions (and uncertainty, if applicable) as an *.npz file using <a class="reference internal" href="../heatmap/#slideflow.Heatmap.save_npz" title="slideflow.Heatmap.save_npz"><code class="xref py py-meth docutils literal notranslate"><span class="pre">slideflow.Heatmap.save_npz()</span></code></a>.</p>
</section>
</section>
</section>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../posthoc/" class="btn btn-neutral float-right" title="Layer Activations" accesskey="n" rel="next">Next <img src="../_static/images/chevron-right-orange.svg" class="next-page"></a>
<a href="../training/" class="btn btn-neutral" title="Training" accesskey="p" rel="prev"><img src="../_static/images/chevron-right-orange.svg" class="previous-page"> Previous</a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2023, James M Dolezal.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">Evaluation</a><ul>
<li><a class="reference internal" href="#evaluating-a-test-set">Evaluating a test set</a></li>
<li><a class="reference internal" href="#generating-predictions">Generating predictions</a><ul>
<li><a class="reference internal" href="#for-a-dataset">For a dataset</a></li>
<li><a class="reference internal" href="#for-a-single-slide">For a single slide</a></li>
</ul>
</li>
<li><a class="reference internal" href="#heatmaps">Heatmaps</a><ul>
<li><a class="reference internal" href="#id2">For a dataset</a></li>
<li><a class="reference internal" href="#id3">For a single slide</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/sphinx_highlight.js"></script>
<script type="text/javascript" src="../_static/js/vendor/jquery-3.6.3.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="../_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li>
<a href="https://slideflow.dev">Docs</a>
</li>
<li>
<a href="https://slideflow.dev/tutorial1/">Tutorials</a>
</li>
<li>
<a href="https://github.com/slideflow/slideflow">Github</a>
</li>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script script type="text/javascript">
var collapsedSections = [];
</script>
<script type="text/javascript" src="../_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>