Switch to side-by-side view

--- a
+++ b/docs-source/source/custom_loops.rst
@@ -0,0 +1,56 @@
+Custom Training Loops
+=====================
+
+To use ``*.tfrecords`` from extracted tiles in a custom training loop or entirely separate architecture (such as `StyleGAN2 <https://github.com/jamesdolezal/stylegan2-slideflow>`_ or `YoloV5 <https://github.com/ultralytics/yolov5>`_), Tensorflow ``tf.data.Dataset`` or PyTorch ``torch.utils.data.DataLoader`` objects can be created for easily serving processed images to your custom trainer.
+
+TFRecord DataLoader
+*******************
+
+The :class:`slideflow.Dataset` class includes functions to prepare a Tensorflow ``tf.data.Dataset`` or PyTorch ``torch.utils.data.DataLoader`` object to interleave and process images from stored TFRecords. First, create a ``Dataset`` object at a given tile size:
+
+.. code-block:: python
+
+    from slideflow import Project
+
+    P = Project('/project/path', ...)
+    dts = P.dataset(tile_px=299, tile_um=302)
+
+If you want to perform any mini-batch balancing, use the ``.balance()`` method:
+
+.. code-block:: python
+
+    dts = dts.balance('HPV_status', strategy='category')
+
+Other dataset options can also be applied at this step. For example, to clip the maximum number of tiles to take from a slide, use the ``.clip()`` method:
+
+.. code-block:: python
+
+    dts = dts.clip(500)
+
+Finally, use the :meth:`slideflow.Dataset.torch` method to create a DataLoader object:
+
+.. code-block:: python
+
+    dataloader = dts.torch(
+        labels       = ...       # Your outcome label
+        batch_size   = 64,       # Batch size
+        num_workers  = 6,        # Number of workers reading tfrecords
+        infinite     = True,     # True for training, False for validation
+        augment      = True,     # Flip/rotate/compression augmentation
+        standardize  = True,     # Standardize images: mean 0, variance of 1
+        pin_memory   = False,    # Pin memory to GPUs
+    )
+
+or the :meth:`slideflow.Dataset.tensorflow` method to create a ``tf.data.Dataset``:
+
+.. code-block:: python
+
+    dataloader = dts.tensorflow(
+        labels       = ...       # Your outcome label
+        batch_size   = 64,       # Batch size
+        infinite     = True,     # True for training, False for validation
+        augment      = True,     # Flip/rotate/compression augmentation
+        standardize  = True,     # Standardize images
+    )
+
+The returned dataloaders can then be used directly with your external applications. Read more about :ref:`creating and using dataloaders <dataloaders>`.
\ No newline at end of file