[16dd74]: / dsb2018_topcoders / victor / predict_inception.py

Download this file

144 lines (119 with data), 4.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from os import path, mkdir, listdir
import numpy as np
np.random.seed(1)
import random
random.seed(1)
import tensorflow as tf
tf.set_random_seed(1)
import timeit
import cv2
from models import get_inception_resnet_v2_unet_softmax
from tqdm import tqdm
test_folder = path.join('..', 'data_test')
models_folder = 'nn_models'
test_pred = path.join('..', 'predictions', 'inception_test_pred_4')
all_ids = []
all_images = []
all_masks = []
def preprocess_inputs(x):
x = np.asarray(x, dtype='float32')
x /= 127.5
x -= 1.
return x
def bgr_to_lab(img):
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(17, 17))
lab = clahe.apply(lab[:, :, 0])
if lab.mean() > 127:
lab = 255 - lab
return lab[..., np.newaxis]
if __name__ == '__main__':
t0 = timeit.default_timer()
if not path.isdir(test_pred):
mkdir(test_pred)
print('Loading models')
models = []
for it in range(4):
model = get_inception_resnet_v2_unet_softmax((None, None), weights=None)
model.load_weights(path.join(models_folder, 'inception_resnet_v2_weights_{0}.h5'.format(it)))
models.append(model)
print('Predicting test')
for d in tqdm(listdir(test_folder)):
if not path.isdir(path.join(test_folder, d)):
continue
final_mask = None
for scale in range(3):
fid = d
img = cv2.imread(path.join(test_folder, fid, 'images', '{0}.png'.format(fid)), cv2.IMREAD_COLOR)
if final_mask is None:
final_mask = np.zeros((img.shape[0], img.shape[1], 3))
if scale == 1:
img = cv2.resize(img, None, fx=0.75, fy=0.75)
elif scale == 2:
img = cv2.resize(img, None, fx=1.25, fy=1.25)
elif scale == 3:
img = cv2.resize(img, None, fx=1.5, fy=1.5)
x0 = 16
y0 = 16
x1 = 16
y1 = 16
if (img.shape[1] % 32) != 0:
x0 = int((32 - img.shape[1] % 32) / 2)
x1 = (32 - img.shape[1] % 32) - x0
x0 += 16
x1 += 16
if (img.shape[0] % 32) != 0:
y0 = int((32 - img.shape[0] % 32) / 2)
y1 = (32 - img.shape[0] % 32) - y0
y0 += 16
y1 += 16
img0 = np.pad(img, ((y0, y1), (x0, x1), (0, 0)), 'symmetric')
img0 = np.concatenate([img0, bgr_to_lab(img0)], axis=2)
# inp0 = []
# inp1 = []
# for flip in range(2):
# for rot in range(4):
# if flip > 0:
# img = img0[::-1, ...]
# else:
# img = img0
# if rot % 2 == 0:
# inp0.append(np.rot90(img, k=rot))
# else:
# inp1.append(np.rot90(img, k=rot))
#
# inp0 = np.asarray(inp0)
# inp0 = preprocess_inputs(np.array(inp0, "float32"))
# inp1 = np.asarray(inp1)
# inp1 = preprocess_inputs(np.array(inp1, "float32"))
# mask = np.zeros((img0.shape[0], img0.shape[1], OUT_CHANNELS))
# for model in models:
# pred0 = model.predict(inp0, batch_size=1)
# pred1 = model.predict(inp1, batch_size=1)
# j = -1
# for flip in range(2):
# for rot in range(4):
# j += 1
# if rot % 2 == 0:
# pr = np.rot90(pred0[int(j / 2)], k=(4 - rot))
# else:
# pr = np.rot90(pred1[int(j / 2)], k=(4 - rot))
# if flip > 0:
# pr = pr[::-1, ...]
# mask += pr # [..., :2]
mask = np.zeros((img0.shape[0], img0.shape[1], 3))
for model in models:
inp = preprocess_inputs(np.array([img0], "float32"))
pred = model.predict(inp)
mask += pred[0]
mask /= (len(models))
mask = mask[y0:mask.shape[0] - y1, x0:mask.shape[1] - x1, ...]
if scale > 0:
mask = cv2.resize(mask, (final_mask.shape[1], final_mask.shape[0]))
final_mask += mask
final_mask /= 3
final_mask = final_mask * 255
final_mask = final_mask.astype('uint8')
cv2.imwrite(path.join(test_pred, '{0}.png'.format(fid)), final_mask, [cv2.IMWRITE_PNG_COMPRESSION, 9])
elapsed = timeit.default_timer() - t0
print('Time: {:.3f} min'.format(elapsed / 60))