[16dd74]: / dsb2018_topcoders / victor / models.py

Download this file

222 lines (190 with data), 9.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from keras import backend as K
from keras.models import Model
from keras.layers import Input, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, concatenate, Concatenate, UpSampling2D, Activation
from keras.losses import categorical_crossentropy
from keras.applications.inception_resnet_v2 import InceptionResNetV2, inception_resnet_block, conv2d_bn
from keras.applications.densenet import DenseNet121, dense_block, transition_block
bn_axis = 3
channel_axis = bn_axis
def schedule_steps(epoch, steps):
for step in steps:
if step[1] > epoch:
print("Setting learning rate to {}".format(step[0]))
return step[0]
print("Setting learning rate to {}".format(steps[-1][0]))
return steps[-1][0]
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + 1) / (K.sum(y_true_f) + K.sum(y_pred_f) + 1)
def dice_coef_loss(y_true, y_pred):
return 1 - (dice_coef(y_true, y_pred))
def softmax_dice_loss(y_true, y_pred):
return categorical_crossentropy(y_true, y_pred) * 0.5 + dice_coef_loss(y_true[..., 0], y_pred[..., 0]) * 0.3 + dice_coef_loss(y_true[..., 1], y_pred[..., 1]) * 0.2
def dice_coef_rounded_ch0(y_true, y_pred):
y_true_f = K.flatten(K.round(y_true[..., 0]))
y_pred_f = K.flatten(K.round(y_pred[..., 0]))
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + 1) / (K.sum(y_true_f) + K.sum(y_pred_f) + 1)
def dice_coef_rounded_ch1(y_true, y_pred):
y_true_f = K.flatten(K.round(y_true[..., 1]))
y_pred_f = K.flatten(K.round(y_pred[..., 1]))
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + 1) / (K.sum(y_true_f) + K.sum(y_pred_f) + 1)
def conv_block(prev, num_filters, kernel=(3, 3), strides=(1, 1), act='relu', prefix=None):
name = None
if prefix is not None:
name = prefix + '_conv'
conv = Conv2D(num_filters, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(prev)
if prefix is not None:
name = prefix + '_norm'
conv = BatchNormalization(name=name, axis=bn_axis)(conv)
if prefix is not None:
name = prefix + '_act'
conv = Activation(act, name=name)(conv)
return conv
def get_densenet121_unet_softmax(input_shape, weights='imagenet'):
blocks = [6, 12, 24, 16]
img_input = Input(input_shape + (4,))
x = ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name='conv1/bn')(x)
x = Activation('relu', name='conv1/relu')(x)
conv1 = x
x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
x = MaxPooling2D(3, strides=2, name='pool1')(x)
x = dense_block(x, blocks[0], name='conv2')
conv2 = x
x = transition_block(x, 0.5, name='pool2')
x = dense_block(x, blocks[1], name='conv3')
conv3 = x
x = transition_block(x, 0.5, name='pool3')
x = dense_block(x, blocks[2], name='conv4')
conv4 = x
x = transition_block(x, 0.5, name='pool4')
x = dense_block(x, blocks[3], name='conv5')
x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name='bn')(x)
conv5 = x
conv6 = conv_block(UpSampling2D()(conv5), 320)
conv6 = concatenate([conv6, conv4], axis=-1)
conv6 = conv_block(conv6, 320)
conv7 = conv_block(UpSampling2D()(conv6), 256)
conv7 = concatenate([conv7, conv3], axis=-1)
conv7 = conv_block(conv7, 256)
conv8 = conv_block(UpSampling2D()(conv7), 128)
conv8 = concatenate([conv8, conv2], axis=-1)
conv8 = conv_block(conv8, 128)
conv9 = conv_block(UpSampling2D()(conv8), 96)
conv9 = concatenate([conv9, conv1], axis=-1)
conv9 = conv_block(conv9, 96)
conv10 = conv_block(UpSampling2D()(conv9), 64)
conv10 = conv_block(conv10, 64)
res = Conv2D(3, (1, 1), activation='softmax')(conv10)
model = Model(img_input, res)
if weights == 'imagenet':
densenet = DenseNet121(input_shape=input_shape + (3,), weights=weights, include_top=False)
w0 = densenet.layers[2].get_weights()
w = model.layers[2].get_weights()
w[0][:, :, [0, 1, 2], :] = 0.9 * w0[0][:, :, :3, :]
w[0][:, :, 3, :] = 0.1 * w0[0][:, :, 1, :]
model.layers[2].set_weights(w)
for i in range(3, len(densenet.layers)):
model.layers[i].set_weights(densenet.layers[i].get_weights())
model.layers[i].trainable = False
return model
def get_inception_resnet_v2_unet_softmax(input_shape, weights='imagenet'):
inp = Input(input_shape + (4,))
# Stem block: 35 x 35 x 192
x = conv2d_bn(inp, 32, 3, strides=2, padding='same')
x = conv2d_bn(x, 32, 3, padding='same')
x = conv2d_bn(x, 64, 3)
conv1 = x
x = MaxPooling2D(3, strides=2, padding='same')(x)
x = conv2d_bn(x, 80, 1, padding='same')
x = conv2d_bn(x, 192, 3, padding='same')
conv2 = x
x = MaxPooling2D(3, strides=2, padding='same')(x)
# Mixed 5b (Inception-A block): 35 x 35 x 320
branch_0 = conv2d_bn(x, 96, 1)
branch_1 = conv2d_bn(x, 48, 1)
branch_1 = conv2d_bn(branch_1, 64, 5)
branch_2 = conv2d_bn(x, 64, 1)
branch_2 = conv2d_bn(branch_2, 96, 3)
branch_2 = conv2d_bn(branch_2, 96, 3)
branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
branch_pool = conv2d_bn(branch_pool, 64, 1)
branches = [branch_0, branch_1, branch_2, branch_pool]
channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)
# 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
for block_idx in range(1, 11):
x = inception_resnet_block(x,
scale=0.17,
block_type='block35',
block_idx=block_idx)
conv3 = x
# Mixed 6a (Reduction-A block): 17 x 17 x 1088
branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='same')
branch_1 = conv2d_bn(x, 256, 1)
branch_1 = conv2d_bn(branch_1, 256, 3)
branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='same')
branch_pool = MaxPooling2D(3, strides=2, padding='same')(x)
branches = [branch_0, branch_1, branch_pool]
x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)
# 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
for block_idx in range(1, 21):
x = inception_resnet_block(x,
scale=0.1,
block_type='block17',
block_idx=block_idx)
conv4 = x
# Mixed 7a (Reduction-B block): 8 x 8 x 2080
branch_0 = conv2d_bn(x, 256, 1)
branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='same')
branch_1 = conv2d_bn(x, 256, 1)
branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='same')
branch_2 = conv2d_bn(x, 256, 1)
branch_2 = conv2d_bn(branch_2, 288, 3)
branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='same')
branch_pool = MaxPooling2D(3, strides=2, padding='same')(x)
branches = [branch_0, branch_1, branch_2, branch_pool]
x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)
# 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
for block_idx in range(1, 10):
x = inception_resnet_block(x,
scale=0.2,
block_type='block8',
block_idx=block_idx)
x = inception_resnet_block(x,
scale=1.,
activation=None,
block_type='block8',
block_idx=10)
# Final convolution block: 8 x 8 x 1536
x = conv2d_bn(x, 1536, 1, name='conv_7b')
conv5 = x
conv6 = conv_block(UpSampling2D()(conv5), 320)
conv6 = concatenate([conv6, conv4], axis=-1)
conv6 = conv_block(conv6, 320)
conv7 = conv_block(UpSampling2D()(conv6), 256)
conv7 = concatenate([conv7, conv3], axis=-1)
conv7 = conv_block(conv7, 256)
conv8 = conv_block(UpSampling2D()(conv7), 128)
conv8 = concatenate([conv8, conv2], axis=-1)
conv8 = conv_block(conv8, 128)
conv9 = conv_block(UpSampling2D()(conv8), 96)
conv9 = concatenate([conv9, conv1], axis=-1)
conv9 = conv_block(conv9, 96)
conv10 = conv_block(UpSampling2D()(conv9), 64)
conv10 = conv_block(conv10, 64)
res = Conv2D(3, (1, 1), activation='softmax')(conv10)
model = Model(inp, res)
if weights == 'imagenet':
inception_resnet_v2 = InceptionResNetV2(weights=weights, include_top=False, input_shape=input_shape + (3,))
for i in range(2, len(inception_resnet_v2.layers)-1):
model.layers[i].set_weights(inception_resnet_v2.layers[i].get_weights())
model.layers[i].trainable = False
return model