[16dd74]: / dsb2018_topcoders / victor / merge_test.py

Download this file

61 lines (54 with data), 2.4 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: utf-8 -*-
from os import path, mkdir, listdir
import numpy as np
np.random.seed(1)
import random
random.seed(1)
import tensorflow as tf
tf.set_random_seed(1)
import timeit
import cv2
from tqdm import tqdm
pred_folders = [
('dpn_softmax_f0', 'dpn_softmax_f0_test', 1),
('densenet_oof_pred_2', 'densenet_test_pred_2', 1),
('dpn_sigm_f0', 'dpn_sigm_f0_test', 1),
('inception_oof_pred_4', 'inception_test_pred_4', 2),
('oof_resnet152', 'pred_resnet152', 1),
('oof_resnet101_full_masks', 'pred_resnet101_full_masks', 1),
('oof_densenet169_softmax', 'pred_densenet169_softmax', 1),
('resnet_softmax', 'resnet_softmax_test', 1),
]
out_folder = path.join('..', 'predictions')
test_out = path.join(out_folder, 'merged_test')
test_extend_out = path.join(out_folder, 'merged_extend_test')
if __name__ == '__main__':
t0 = timeit.default_timer()
if not path.isdir(test_out):
mkdir(test_out)
if not path.isdir(test_extend_out):
mkdir(test_extend_out)
w_sum = np.sum([p[2] for p in pred_folders])
for f in tqdm(sorted(listdir(path.join(out_folder, pred_folders[0][1])))):
if path.isfile(path.join(out_folder, pred_folders[0][1], f)) and '.png' in f:
pred_res = None
ext_res = None
for i in range(len(pred_folders)):
pred = cv2.imread(path.join(out_folder, pred_folders[i][1], f), cv2.IMREAD_UNCHANGED).astype('float32')
if pred_res is None:
pred_res = np.zeros_like(pred)
ext_res = np.zeros_like(pred)
if i in [2, 5]:
ext_res[..., 0] += pred[..., 0]
if i == 2:
pred = pred[..., ::-1]
pred *= pred_folders[i][2]
pred_res += pred
pred_res /= w_sum
ext_res /= 2
pred_res = pred_res.astype('uint8')
ext_res = ext_res.astype('uint8')
cv2.imwrite(path.join(test_out, f), pred_res, [cv2.IMWRITE_PNG_COMPRESSION, 9])
cv2.imwrite(path.join(test_extend_out, f), ext_res, [cv2.IMWRITE_PNG_COMPRESSION, 9])
elapsed = timeit.default_timer() - t0
print('Time: {:.3f} min'.format(elapsed / 60))