[16dd74]: / dsb2018_topcoders / victor / create_submissions.py

Download this file

206 lines (166 with data), 7.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# -*- coding: utf-8 -*-
from os import path, listdir, mkdir
import numpy as np
np.random.seed(1)
import random
random.seed(1)
import timeit
import cv2
from skimage.color import label2rgb
from tqdm import tqdm
from multiprocessing import Pool
import lightgbm as lgb
from train_classifier import get_inputs
import pandas as pd
data_folder = path.join('..', 'data')
pred_folder = path.join('..', 'predictions')
test_pred_folder = path.join(pred_folder, 'merged_test')
test_images_folder = path.join('..', 'data_test')
lgbm_models_folder = 'lgbm_models'
test_out_folders = ['lgbm_test_sub1', 'lgbm_test_sub2']
color_out_folders = ['color_test_sub1', 'color_test_sub2']
extend_mask_test = path.join(pred_folder, 'merged_extend_test')
DATA_THREADS = 12
num_split_iters = 50
folds_count = 3
sep_count = 3
best_thrs = [0.3, 0.2]
def rle_encoding(x):
'''
x: numpy array of shape (height, width), 1 - mask, 0 - background
Returns run length as list
'''
dots = np.where(x.T.flatten()==1)[0] # .T sets Fortran order down-then-right
run_lengths = []
prev = -2
for b in dots:
if (b>prev+1): run_lengths.extend((b+1, 0))
run_lengths[-1] += 1
prev = b
return run_lengths
def pred_to_rles(y_pred):
for i in range(1, y_pred.max() + 1):
yield rle_encoding(y_pred == i)
if __name__ == '__main__':
t0 = timeit.default_timer()
for f in test_out_folders:
if not path.isdir(path.join(pred_folder, f)):
mkdir(path.join(pred_folder, f))
for f in color_out_folders:
if not path.isdir(path.join(pred_folder, f)):
mkdir(path.join(pred_folder, f))
all_files = []
inputs = []
outputs = []
inputs2 = []
outputs2 = []
labels = []
labels2 = []
separated_regions = []
fns = []
paramss = []
gbm_models = []
for it in range(num_split_iters):
for it2 in range(folds_count):
gbm_models.append(lgb.Booster(model_file=path.join(lgbm_models_folder, 'gbm_model_{0}_{1}.txt'.format(it, it2))))
inputs = []
paramss = []
for f in tqdm(sorted(listdir(test_pred_folder))):
if path.isfile(path.join(test_pred_folder, f)) and '.png' in f:
img_id = f.split('.')[0]
paramss.append((f, test_pred_folder, path.join(test_images_folder, img_id, 'images'), None, extend_mask_test))
inputs = []
inputs2 = []
labels= []
labels2 = []
separated_regions= []
with Pool(processes=DATA_THREADS) as pool:
results = pool.starmap(get_inputs, paramss)
for i in range(len(results)):
inp, lbl, inp2, lbl2, sep_regs = results[i]
inputs.append(inp)
inputs2.append(inp2)
labels.append(lbl)
labels2.append(lbl2)
separated_regions.append(sep_regs)
for sub_id in range(2):
print('Creating submission', sub_id)
new_test_ids = []
rles = []
bst_k = np.zeros((sep_count+1))
removed = 0
replaced = 0
total_cnt = 0
im_idx = 0
empty_cnt = 0
for f in tqdm(sorted(listdir(test_pred_folder))):
if path.isfile(path.join(test_pred_folder, f)) and '.png' in f:
img_id = f.split('.')[0]
inp = inputs[im_idx]
pred = np.zeros((inp.shape[0]))
pred2 = [np.zeros((inp2.shape[0])) for inp2 in inputs2[im_idx]]
for m in gbm_models:
if pred.shape[0] > 0:
pred += m.predict(inp)
for k in range(len(inputs2[im_idx])):
if pred2[k].shape[0] > 0:
pred2[k] += m.predict(inputs2[im_idx][k])
if pred.shape[0] > 0:
pred /= len(gbm_models)
for k in range(len(pred2)):
if pred2[k].shape[0] > 0:
pred2[k] /= len(gbm_models)
pred_labels = np.zeros_like(labels[im_idx], dtype='uint16')
clr = 1
for i in range(pred.shape[0]):
max_sep = -1
max_pr = pred[i]
for k in range(len(separated_regions[im_idx])):
if len(separated_regions[im_idx][k][i]) > 0:
pred_lvl2 = pred2[k][separated_regions[im_idx][k][i]]
if len(pred_lvl2) > 1 and pred_lvl2.mean() > max_pr:
max_sep = k
max_pr = pred_lvl2.mean()
break
if len(pred_lvl2) > 1 and pred_lvl2.max() > max_pr:
max_sep = k
max_pr = pred_lvl2.max()
if max_sep >= 0:
pred_lvl2 = pred2[max_sep][separated_regions[im_idx][max_sep][i]]
replaced += 1
for j in separated_regions[im_idx][max_sep][i]:
if pred2[max_sep][j] > best_thrs[sub_id]:
pred_labels[labels2[im_idx][max_sep] == j+1] = clr
clr += 1
else:
removed += 1
else:
if pred[i] > best_thrs[sub_id]:
pred_labels[labels[im_idx] == i+1] = clr
clr += 1
else:
removed += 1
bst_k[max_sep+1] += 1
total_cnt += pred_labels.max()
cv2.imwrite(path.join(pred_folder, test_out_folders[sub_id], f.replace('.png', '.tif')), pred_labels)
rle = list(pred_to_rles(pred_labels))
if len(rle) == 0:
empty_cnt += 1
rles.extend([''])
new_test_ids.extend([img_id])
else:
rles.extend(rle)
new_test_ids.extend([img_id] * len(rle))
clr_labels = label2rgb(pred_labels, bg_label=0)
clr_labels *= 255
clr_labels = clr_labels.astype('uint8')
cv2.imwrite(path.join(pred_folder, color_out_folders[sub_id], '{0}.png'.format(img_id)), clr_labels, [cv2.IMWRITE_PNG_COMPRESSION, 9])
im_idx += 1
sub = pd.DataFrame()
sub['ImageId'] = new_test_ids
sub['EncodedPixels'] = pd.Series(rles).apply(lambda x: ' '.join(str(y) for y in x))
sub.to_csv(path.join(pred_folder, 'submission_{0}.csv'.format(sub_id)), index=False)
print('total_cnt', total_cnt, 'removed', removed, 'replaced', replaced, 'empty:', empty_cnt)
print(bst_k)
elapsed = timeit.default_timer() - t0
print('Time: {:.3f} min'.format(elapsed / 60))