#!/usr/bin/env bash
##################### Resnet152 FPN with Sigmoid activation ##############################
python train.py \
--gpu "0" \
--fold "0,1,2,3" \
--num_workers 8 \
--network resnet152_2 \
--freeze_till_layer input_1 \
--loss double_head_loss \
--optimizer adam \
--learning_rate 0.00002 \
--decay 0.0001 \
--batch_size 16 \
--crop_size 224 \
--steps_per_epoch 500 \
--epochs 16 \
--preprocessing_function caffe \
--weights "nn_models/best_resnet152_2_fold{}.h5"
##################### Densenet169 FPN with Softmax activation ##############################
python train.py \
--gpu "0" \
--fold "0,1,2,3" \
--num_workers 8 \
--network densenet169_softmax \
--freeze_till_layer input_1 \
--loss categorical_dice \
--optimizer adam \
--use_softmax \
--learning_rate 0.00002 \
--decay 0.0001 \
--batch_size 16 \
--crop_size 256 \
--steps_per_epoch 500 \
--epochs 16 \
--preprocessing_function torch \
--weights "nn_models/best_densenet169_softmax_fold{}.h5"
##################### Resnet101 FPN Full masks with Sigmoid activation ##############################
python train.py \
--gpu "0" \
--fold "0,1,2,3" \
--num_workers 8 \
--network resnet101_2 \
--freeze_till_layer input_1 \
--loss double_head_loss \
--optimizer adam \
--learning_rate 0.00002 \
--decay 0.0001 \
--batch_size 16 \
--crop_size 256 \
--steps_per_epoch 500 \
--epochs 16 \
--use_full_masks \
--preprocessing_function caffe \
--weights "nn_models/best_resnet101_2_fold{}.h5"