--- a +++ b/dsb2018_topcoders/selim/train_all.sh @@ -0,0 +1,112 @@ +#!/usr/bin/env bash + +##################### Resnet152 FPN with Sigmoid activation ############################## + +python train.py \ +--gpu "0" \ +--fold "0,1,2,3" \ +--num_workers 8 \ +--network resnet152_2 \ +--freeze_till_layer input_1 \ +--loss double_head_loss \ +--optimizer adam \ +--learning_rate 0.0001 \ +--decay 0.0001 \ +--batch_size 16 \ +--crop_size 224 \ +--steps_per_epoch 500 \ +--epochs 2 \ +--preprocessing_function caffe + +python train.py \ +--gpu "0" \ +--fold "0,1,2,3" \ +--num_workers 8 \ +--network resnet152_2 \ +--freeze_till_layer input_1 \ +--loss double_head_loss \ +--optimizer adam \ +--learning_rate 0.0001 \ +--decay 0.0001 \ +--batch_size 16 \ +--crop_size 224 \ +--steps_per_epoch 500 \ +--epochs 70 \ +--preprocessing_function caffe \ +--weights "nn_models/best_resnet152_2_fold{}.h5" + + +##################### Densenet169 FPN with Softmax activation ############################## + +python train.py \ +--gpu "0" \ +--fold "0,1,2,3" \ +--num_workers 8 \ +--network densenet169_softmax \ +--freeze_till_layer input_1 \ +--loss categorical_dice \ +--optimizer adam \ +--use_softmax \ +--learning_rate 0.0001 \ +--decay 0.0001 \ +--batch_size 16 \ +--crop_size 256 \ +--steps_per_epoch 500 \ +--epochs 2 \ +--preprocessing_function torch + +python train.py \ +--gpu "0" \ +--fold "0,1,2,3" \ +--num_workers 8 \ +--network densenet169_softmax \ +--freeze_till_layer input_1 \ +--loss categorical_dice \ +--optimizer adam \ +--use_softmax \ +--learning_rate 0.0001 \ +--decay 0.0001 \ +--batch_size 16 \ +--crop_size 256 \ +--steps_per_epoch 500 \ +--epochs 70 \ +--preprocessing_function torch \ +--weights "nn_models/best_densenet169_softmax_fold{}.h5" + +##################### Resnet101 FPN Full masks with Sigmoid activation ############################## + +python train.py \ +--gpu "0" \ +--fold "0,1,2,3" \ +--num_workers 8 \ +--network resnet101_2 \ +--freeze_till_layer input_1 \ +--loss double_head_loss \ +--optimizer adam \ +--learning_rate 0.0001 \ +--decay 0.0001 \ +--batch_size 16 \ +--crop_size 224 \ +--steps_per_epoch 500 \ +--epochs 2 \ +--use_full_masks \ +--preprocessing_function caffe + +python train.py \ +--gpu "0" \ +--fold "0,1,2,3" \ +--num_workers 8 \ +--network resnet101_2 \ +--freeze_till_layer input_1 \ +--loss double_head_loss \ +--optimizer adam \ +--learning_rate 0.0001 \ +--decay 0.0001 \ +--batch_size 16 \ +--crop_size 256 \ +--steps_per_epoch 500 \ +--epochs 70 \ +--use_full_masks \ +--preprocessing_function caffe \ +--weights "nn_models/best_resnet101_2_fold{}.h5" +