[16dd74]: / dsb2018_topcoders / selim / train.py

Download this file

146 lines (122 with data), 6.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gc
import cv2
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
import os
from params import args
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
from aug.transforms import aug_mega_hardcore
from keras.losses import binary_crossentropy
from keras.utils.training_utils import multi_gpu_model
from datasets.dsb_binary import DSB2018BinaryDataset
from models.model_factory import make_model
from keras.callbacks import LearningRateScheduler, ModelCheckpoint, TensorBoard
from keras.optimizers import RMSprop, Adam, SGD
from losses import make_loss, hard_dice_coef, hard_dice_coef_ch1
import keras.backend as K
class ModelCheckpointMGPU(ModelCheckpoint):
def __init__(self, original_model, filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1):
self.original_model = original_model
super().__init__(filepath, monitor, verbose, save_best_only, save_weights_only, mode, period)
def on_epoch_end(self, epoch, logs=None):
self.model = self.original_model
super().on_epoch_end(epoch, logs)
gpus = [x.name for x in K.device_lib.list_local_devices() if x.name[:4] == '/gpu']
def freeze_model(model, freeze_before_layer):
if freeze_before_layer == "ALL":
for l in model.layers:
l.trainable = False
else:
freeze_before_layer_index = -1
for i, l in enumerate(model.layers):
if l.name == freeze_before_layer:
freeze_before_layer_index = i
for l in model.layers[:freeze_before_layer_index + 1]:
l.trainable = False
def main():
if args.crop_size:
print('Using crops of shape ({}, {})'.format(args.crop_size, args.crop_size))
else:
print('Using full size images')
folds = [int(f) for f in args.fold.split(",")]
for fold in folds:
channels = 3
if args.multi_gpu:
with K.tf.device("/cpu:0"):
model = make_model(args.network, (None, None, 3))
else:
model = make_model(args.network, (None, None, channels))
if args.weights is None:
print('No weights passed, training from scratch')
else:
weights_path = args.weights.format(fold)
print('Loading weights from {}'.format(weights_path))
model.load_weights(weights_path, by_name=True)
freeze_model(model, args.freeze_till_layer)
optimizer = RMSprop(lr=args.learning_rate)
if args.optimizer:
if args.optimizer == 'rmsprop':
optimizer = RMSprop(lr=args.learning_rate, decay=float(args.decay))
elif args.optimizer == 'adam':
optimizer = Adam(lr=args.learning_rate, decay=float(args.decay))
elif args.optimizer == 'amsgrad':
optimizer = Adam(lr=args.learning_rate, decay=float(args.decay), amsgrad=True)
elif args.optimizer == 'sgd':
optimizer = SGD(lr=args.learning_rate, momentum=0.9, nesterov=True, decay=float(args.decay))
dataset = DSB2018BinaryDataset(args.images_dir, args.masks_dir, args.labels_dir, fold, args.n_folds, seed=args.seed)
random_transform = aug_mega_hardcore()
train_generator = dataset.train_generator((args.crop_size, args.crop_size), args.preprocessing_function, random_transform, batch_size=args.batch_size)
val_generator = dataset.val_generator(args.preprocessing_function, batch_size=1)
best_model_file = '{}/best_{}{}_fold{}.h5'.format(args.models_dir, args.alias, args.network,fold)
best_model = ModelCheckpointMGPU(model, filepath=best_model_file, monitor='val_loss',
verbose=1,
mode='min',
period=args.save_period,
save_best_only=True,
save_weights_only=True)
last_model_file = '{}/last_{}{}_fold{}.h5'.format(args.models_dir, args.alias, args.network,fold)
last_model = ModelCheckpointMGPU(model, filepath=last_model_file, monitor='val_loss',
verbose=1,
mode='min',
period=args.save_period,
save_best_only=False,
save_weights_only=True)
if args.multi_gpu:
model = multi_gpu_model(model, len(gpus))
model.compile(loss=make_loss(args.loss_function),
optimizer=optimizer,
metrics=[binary_crossentropy, hard_dice_coef_ch1, hard_dice_coef])
def schedule_steps(epoch, steps):
for step in steps:
if step[1] > epoch:
print("Setting learning rate to {}".format(step[0]))
return step[0]
print("Setting learning rate to {}".format(steps[-1][0]))
return steps[-1][0]
callbacks = [best_model, last_model]
if args.schedule is not None:
steps = [(float(step.split(":")[0]), int(step.split(":")[1])) for step in args.schedule.split(",")]
lrSchedule = LearningRateScheduler(lambda epoch: schedule_steps(epoch, steps))
callbacks.insert(0, lrSchedule)
tb = TensorBoard("logs/{}_{}".format(args.network, fold))
callbacks.append(tb)
steps_per_epoch = len(dataset.train_ids) / args.batch_size + 1
if args.steps_per_epoch > 0:
steps_per_epoch = args.steps_per_epoch
validation_data = val_generator
validation_steps = len(dataset.val_ids)
model.fit_generator(
train_generator,
steps_per_epoch=steps_per_epoch,
epochs=args.epochs,
validation_data=validation_data,
validation_steps=validation_steps,
callbacks=callbacks,
max_queue_size=5,
verbose=1,
workers=args.num_workers)
del model
K.clear_session()
gc.collect()
if __name__ == '__main__':
main()