[16dd74]: / dsb2018_topcoders / selim / pred_test.py

Download this file

136 lines (113 with data), 4.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
from params import args
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
from keras.preprocessing.image import img_to_array, load_img
from keras.applications.imagenet_utils import preprocess_input
from models.model_factory import make_model
from os import path, mkdir, listdir
import numpy as np
np.random.seed(1)
import random
random.seed(1)
import tensorflow as tf
tf.set_random_seed(1)
import timeit
import cv2
from tqdm import tqdm
test_folder = args.test_folder
test_pred = os.path.join(args.out_root_dir, args.out_masks_folder)
all_ids = []
all_images = []
all_masks = []
OUT_CHANNELS = args.out_channels
def preprocess_inputs(x):
return preprocess_input(x, mode=args.preprocessing_function)
if __name__ == '__main__':
t0 = timeit.default_timer()
weights = [os.path.join(args.models_dir, m) for m in args.models]
models = []
for w in weights:
model = make_model(args.network, (None, None, 3))
print("Building model {} from weights {} ".format(args.network, w))
model.load_weights(w)
models.append(model)
os.makedirs(test_pred, exist_ok=True)
print('Predicting test')
for d in tqdm(listdir(test_folder)):
if not path.isdir(path.join(test_folder, d)):
continue
final_mask = None
for scale in range(1):
fid = d
img = cv2.imread(path.join(test_folder, fid, 'images', '{0}.png'.format(fid)), cv2.IMREAD_COLOR)[...,::-1]
if final_mask is None:
final_mask = np.zeros((img.shape[0], img.shape[1], OUT_CHANNELS))
if scale == 1:
img = cv2.resize(img, None, fx=0.75, fy=0.75, interpolation=cv2.INTER_AREA)
elif scale == 2:
img = cv2.resize(img, None, fx=1.25, fy=1.25, interpolation=cv2.INTER_CUBIC)
x0 = 16
y0 = 16
x1 = 16
y1 = 16
if (img.shape[1] % 32) != 0:
x0 = int((32 - img.shape[1] % 32) / 2)
x1 = (32 - img.shape[1] % 32) - x0
x0 += 16
x1 += 16
if (img.shape[0] % 32) != 0:
y0 = int((32 - img.shape[0] % 32) / 2)
y1 = (32 - img.shape[0] % 32) - y0
y0 += 16
y1 += 16
img0 = np.pad(img, ((y0, y1), (x0, x1), (0, 0)), 'symmetric')
# inp0 = []
# inp1 = []
# for flip in range(2):
# for rot in range(4):
# if flip > 0:
# img = img0[::-1, ...]
# else:
# img = img0
# if rot % 2 == 0:
# inp0.append(np.rot90(img, k=rot))
# else:
# inp1.append(np.rot90(img, k=rot))
#
# inp0 = np.asarray(inp0)
# inp0 = preprocess_inputs(np.array(inp0, "float32"))
# inp1 = np.asarray(inp1)
# inp1 = preprocess_inputs(np.array(inp1, "float32"))
# mask = np.zeros((img0.shape[0], img0.shape[1], OUT_CHANNELS))
# for model in models:
# pred0 = model.predict(inp0, batch_size=1)
# pred1 = model.predict(inp1, batch_size=1)
# j = -1
# for flip in range(2):
# for rot in range(4):
# j += 1
# if rot % 2 == 0:
# pr = np.rot90(pred0[int(j / 2)], k=(4 - rot))
# else:
# pr = np.rot90(pred1[int(j / 2)], k=(4 - rot))
# if flip > 0:
# pr = pr[::-1, ...]
# mask += pr # [..., :2]
mask = np.zeros((img0.shape[0], img0.shape[1], OUT_CHANNELS))
for model in models:
inp = preprocess_inputs(np.array([img0], "float32"))
pred = model.predict(inp)
mask += pred[0]
mask /= (len(models))
mask = mask[y0:mask.shape[0] - y1, x0:mask.shape[1] - x1, ...]
if scale > 0:
mask = cv2.resize(mask, (final_mask.shape[1], final_mask.shape[0]))
final_mask += mask
final_mask /= 1
if OUT_CHANNELS == 2:
final_mask = np.concatenate([final_mask, np.zeros_like(final_mask)[..., 0:1]], axis=-1)
final_mask = final_mask * 255
final_mask = final_mask.astype('uint8')
cv2.imwrite(path.join(test_pred, '{0}.png'.format(fid)), final_mask, [cv2.IMWRITE_PNG_COMPRESSION, 9])
elapsed = timeit.default_timer() - t0
print('Time: {:.3f} min'.format(elapsed / 60))