import os
from params import args
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
from keras.preprocessing.image import img_to_array, load_img
from keras.applications.imagenet_utils import preprocess_input
from models.model_factory import make_model
from os import path, mkdir, listdir
import numpy as np
np.random.seed(1)
import random
random.seed(1)
import tensorflow as tf
tf.set_random_seed(1)
import timeit
import cv2
from tqdm import tqdm
test_folder = args.test_folder
test_pred = os.path.join(args.out_root_dir, args.out_masks_folder)
all_ids = []
all_images = []
all_masks = []
OUT_CHANNELS = args.out_channels
def preprocess_inputs(x):
return preprocess_input(x, mode=args.preprocessing_function)
if __name__ == '__main__':
t0 = timeit.default_timer()
weights = [os.path.join(args.models_dir, m) for m in args.models]
models = []
for w in weights:
model = make_model(args.network, (None, None, 3))
print("Building model {} from weights {} ".format(args.network, w))
model.load_weights(w)
models.append(model)
os.makedirs(test_pred, exist_ok=True)
print('Predicting test')
for d in tqdm(listdir(test_folder)):
if not path.isdir(path.join(test_folder, d)):
continue
final_mask = None
for scale in range(1):
fid = d
img = cv2.imread(path.join(test_folder, fid, 'images', '{0}.png'.format(fid)), cv2.IMREAD_COLOR)[...,::-1]
if final_mask is None:
final_mask = np.zeros((img.shape[0], img.shape[1], OUT_CHANNELS))
if scale == 1:
img = cv2.resize(img, None, fx=0.75, fy=0.75, interpolation=cv2.INTER_AREA)
elif scale == 2:
img = cv2.resize(img, None, fx=1.25, fy=1.25, interpolation=cv2.INTER_CUBIC)
x0 = 16
y0 = 16
x1 = 16
y1 = 16
if (img.shape[1] % 32) != 0:
x0 = int((32 - img.shape[1] % 32) / 2)
x1 = (32 - img.shape[1] % 32) - x0
x0 += 16
x1 += 16
if (img.shape[0] % 32) != 0:
y0 = int((32 - img.shape[0] % 32) / 2)
y1 = (32 - img.shape[0] % 32) - y0
y0 += 16
y1 += 16
img0 = np.pad(img, ((y0, y1), (x0, x1), (0, 0)), 'symmetric')
# inp0 = []
# inp1 = []
# for flip in range(2):
# for rot in range(4):
# if flip > 0:
# img = img0[::-1, ...]
# else:
# img = img0
# if rot % 2 == 0:
# inp0.append(np.rot90(img, k=rot))
# else:
# inp1.append(np.rot90(img, k=rot))
#
# inp0 = np.asarray(inp0)
# inp0 = preprocess_inputs(np.array(inp0, "float32"))
# inp1 = np.asarray(inp1)
# inp1 = preprocess_inputs(np.array(inp1, "float32"))
# mask = np.zeros((img0.shape[0], img0.shape[1], OUT_CHANNELS))
# for model in models:
# pred0 = model.predict(inp0, batch_size=1)
# pred1 = model.predict(inp1, batch_size=1)
# j = -1
# for flip in range(2):
# for rot in range(4):
# j += 1
# if rot % 2 == 0:
# pr = np.rot90(pred0[int(j / 2)], k=(4 - rot))
# else:
# pr = np.rot90(pred1[int(j / 2)], k=(4 - rot))
# if flip > 0:
# pr = pr[::-1, ...]
# mask += pr # [..., :2]
mask = np.zeros((img0.shape[0], img0.shape[1], OUT_CHANNELS))
for model in models:
inp = preprocess_inputs(np.array([img0], "float32"))
pred = model.predict(inp)
mask += pred[0]
mask /= (len(models))
mask = mask[y0:mask.shape[0] - y1, x0:mask.shape[1] - x1, ...]
if scale > 0:
mask = cv2.resize(mask, (final_mask.shape[1], final_mask.shape[0]))
final_mask += mask
final_mask /= 1
if OUT_CHANNELS == 2:
final_mask = np.concatenate([final_mask, np.zeros_like(final_mask)[..., 0:1]], axis=-1)
final_mask = final_mask * 255
final_mask = final_mask.astype('uint8')
cv2.imwrite(path.join(test_pred, '{0}.png'.format(fid)), final_mask, [cv2.IMWRITE_PNG_COMPRESSION, 9])
elapsed = timeit.default_timer() - t0
print('Time: {:.3f} min'.format(elapsed / 60))