[16dd74]: / dsb2018_topcoders / albu / src / dataset / image_cropper.py

Download this file

221 lines (195 with data), 9.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import random
import numpy as np
import matplotlib.pyplot as plt
class ImageCropper:
def __init__(self, img_rows, img_cols, target_rows, target_cols, pad):
self.image_rows = img_rows
self.image_cols = img_cols
self.target_rows = target_rows
self.target_cols = target_cols
self.pad = pad
self.use_crop = (img_rows != target_rows) or (img_cols != target_cols)
self.starts_y = self.sequential_starts(axis=0) if self.use_crop else [0]
self.starts_x = self.sequential_starts(axis=1) if self.use_crop else [0]
self.positions = [(x, y) for x in self.starts_x for y in self.starts_y]
# self.lock = threading.Lock()
def random_crop_coords(self):
x = random.randint(0, self.image_cols - self.target_cols)
y = random.randint(0, self.image_rows - self.target_rows)
return x, y
def crop_image(self, image, x, y):
return image[y: y+self.target_rows, x: x+self.target_cols,...] if self.use_crop else image
def sequential_crops(self, img):
for startx in self.starts_x:
for starty in self.starts_y:
yield self.crop_image(img, startx, starty)
def sequential_starts(self, axis=0):
big_segment = self.image_cols if axis else self.image_rows
small_segment = self.target_cols if axis else self.target_rows
if big_segment == small_segment:
return [0]
steps = np.ceil((big_segment - self.pad) / (small_segment - self.pad)) # how many small segments in big segment
if steps == 1:
return [0]
new_pad = int(np.floor((small_segment * steps - big_segment) / (steps - 1))) # recalculate pad
starts = [i for i in range(0, big_segment - small_segment, small_segment - new_pad)]
starts.append(big_segment - small_segment)
return starts
import random
from skimage.morphology import square, erosion, dilation, watershed
from skimage.filters import median
from skimage import measure
class DVCropper:
def __init__(self, masks, labels, target_rows, target_cols):
self.input_shape = (target_rows, target_cols)
self.all_good4copy = []
self.all_labels = labels
for msk, lbl in zip(masks, labels):
tmp = np.zeros_like(msk[..., 0], dtype='uint8')
tmp[1:-1, 1:-1] = msk[1:-1, 1:-1, 2]
good4copy = list(set(np.unique(lbl[lbl > 0])).symmetric_difference(np.unique(lbl[(lbl > 0) & (tmp == 0)])))
self.all_good4copy.append(good4copy)
def create_mask(self, labels):
labels = measure.label(labels, neighbors=8, background=0)
tmp = dilation(labels > 0, square(9))
tmp2 = watershed(tmp, labels, mask=tmp, watershed_line=True) > 0
tmp = tmp ^ tmp2
tmp = dilation(tmp, square(7))
props = measure.regionprops(labels)
msk0 = 255 * (labels > 0)
msk0 = msk0.astype('uint8')
msk1 = np.zeros_like(labels, dtype='bool')
max_area = np.max([p.area for p in props])
for y0 in range(labels.shape[0]):
for x0 in range(labels.shape[1]):
if not tmp[y0, x0]:
continue
if labels[y0, x0] == 0:
if max_area > 4000:
sz = 6
else:
sz = 3
else:
sz = 3
if props[labels[y0, x0] - 1].area < 300:
sz = 1
elif props[labels[y0, x0] - 1].area < 2000:
sz = 2
uniq = np.unique(labels[max(0, y0 - sz):min(labels.shape[0], y0 + sz + 1),
max(0, x0 - sz):min(labels.shape[1], x0 + sz + 1)])
if len(uniq[uniq > 0]) > 1:
msk1[y0, x0] = True
msk0[y0, x0] = 0
msk1 = 255 * msk1
msk1 = msk1.astype('uint8')
msk2 = np.zeros_like(labels, dtype='uint8')
msk = np.stack((msk2, msk1, msk0))
msk = np.rollaxis(msk, 0, 3)
return msk
def strange_method(self, _idx, img0, msk0, lbl0, x0, y0):
input_shape = self.input_shape
good4copy = self.all_good4copy[_idx]
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
msk = msk0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
if len(good4copy) > 0 and random.random() > 0.75:
num_copy = random.randrange(1, min(6, len(good4copy) + 1))
lbl_max = lbl0.max()
for i in range(num_copy):
lbl_max += 1
l_id = random.choice(good4copy)
lbl_msk = self.all_labels[_idx] == l_id
row, col = np.where(lbl_msk)
y1, x1 = np.min(np.where(lbl_msk), axis=1)
y2, x2 = np.max(np.where(lbl_msk), axis=1)
lbl_msk = lbl_msk[y1:y2 + 1, x1:x2 + 1]
lbl_img = img0[y1:y2 + 1, x1:x2 + 1, :]
if random.random() > 0.5:
lbl_msk = lbl_msk[:, ::-1, ...]
lbl_img = lbl_img[:, ::-1, ...]
rot = random.randrange(4)
if rot > 0:
lbl_msk = np.rot90(lbl_msk, k=rot)
lbl_img = np.rot90(lbl_img, k=rot)
x1 = random.randint(max(0, x0 - lbl_msk.shape[1] // 2),
min(img0.shape[1] - lbl_msk.shape[1], x0 + input_shape[1] - lbl_msk.shape[1] // 2))
y1 = random.randint(max(0, y0 - lbl_msk.shape[0] // 2),
min(img0.shape[0] - lbl_msk.shape[0], y0 + input_shape[0] - lbl_msk.shape[0] // 2))
tmp = erosion(lbl_msk, square(5))
lbl_msk_dif = lbl_msk ^ tmp
tmp = dilation(lbl_msk, square(5))
lbl_msk_dif = lbl_msk_dif | (tmp ^ lbl_msk)
lbl0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_max
img0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_img[lbl_msk]
full_diff_mask = np.zeros_like(img0[..., 0], dtype='bool')
full_diff_mask[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]] = lbl_msk_dif
img0[..., 0][full_diff_mask] = median(img0[..., 0], mask=full_diff_mask)[full_diff_mask]
img0[..., 1][full_diff_mask] = median(img0[..., 1], mask=full_diff_mask)[full_diff_mask]
img0[..., 2][full_diff_mask] = median(img0[..., 2], mask=full_diff_mask)[full_diff_mask]
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]
msk = self.create_mask(lbl)
return img, msk
#dbg functions
def starts_to_mpl(starts, t):
ends = np.array(starts) + t
data = []
prev_e = None
for idx, (s, e) in enumerate(zip(starts, ends)):
# if prev_e is not None:
# data.append((prev_e, s))
# data.append((idx-1, idx-1))
# data.append('b')
# data.append((prev_e, s))
# data.append((idx, idx))
# data.append('b')
data.append((s, e))
data.append((idx, idx))
data.append('r')
prev_e = e
if idx > 0:
data.append((s, s))
data.append((idx-1, idx))
data.append('g--')
if idx < len(starts) - 1:
data.append((e, e))
data.append((idx, idx+1))
data.append('g--')
return data
def calc_starts_and_visualize(c, tr, tc):
starts_rows = c.sequential_starts(axis=0)
data_rows = starts_to_mpl(starts_rows, tr)
starts_cols = c.sequential_starts(axis=1)
data_cols = starts_to_mpl(starts_cols, tc)
f, axarr = plt.subplots(1, 2, sharey=True)
axarr[0].plot(*data_rows)
axarr[0].set_title('rows')
axarr[1].plot(*data_cols)
axarr[1].set_title('cols')
plt.show()
if __name__ == '__main__':
# opts = 2072, 2072, 1024, 1024, 0
# c = ImageCropper(*opts)
# calc_starts_and_visualize(c, opts[2], opts[3])
import cv2, os
from scipy.misc import imread
root = r'/home/albu/dev/bowl/train_imgs'
root_masks = os.path.join(root, 'masks_all6')
root_labels = os.path.join(root, 'labels_all6')
root_images = os.path.join(root, 'images_all6')
masks, labels, images = [], [], []
for fn in os.listdir(root_masks):
masks.append(imread(os.path.join(root_masks, os.path.splitext(fn)[0] + '.png'), mode='RGB'))
images.append(imread(os.path.join(root_images, os.path.splitext(fn)[0] + '.png'), mode='RGB'))
labels.append(cv2.imread(os.path.join(root_labels, os.path.splitext(fn)[0] + '.tif'), cv2.IMREAD_UNCHANGED))
c = DVCropper(masks, labels, 256, 256)
for _idx in range(100):
img0 = images[_idx]
msk0 = masks[_idx]
lbl0 = labels[_idx]
x0, y0 = 10, 10
img, msk = c.strange_method(_idx, np.copy(img0), np.copy(msk0), lbl0, x0, y0)
cv2.imshow('img0', img0[x0:x0+256, y0:y0+256, :])
cv2.imshow('msk0', msk0[x0:x0+256, y0:y0+256,:])
cv2.imshow('img', img)
cv2.imshow('msk', msk)
cv2.waitKey()