|
a |
|
b/data_tools.py |
|
|
1 |
import os |
|
|
2 |
import subprocess |
|
|
3 |
from distutils import dir_util |
|
|
4 |
from pathlib import Path |
|
|
5 |
|
|
|
6 |
import cv2 as cv |
|
|
7 |
import numpy as np |
|
|
8 |
from PIL import Image |
|
|
9 |
from matplotlib import pyplot as plt |
|
|
10 |
from tqdm import tqdm |
|
|
11 |
|
|
|
12 |
from features import NucleiFeatures |
|
|
13 |
|
|
|
14 |
Image.MAX_IMAGE_PIXELS = None |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
def get_x_and_y(name): |
|
|
18 |
x, y = os.path.splitext(name)[0].split('_')[-2:] |
|
|
19 |
return int(x), int(y) |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def split_image(img, x_tiles_cnt=None, y_tiles_cnt=None, x_tile_size=None, y_tile_size=None, base='img'): |
|
|
23 |
""" |
|
|
24 |
Splits an image array to smaller tiles for further segmentation. |
|
|
25 |
Specify tiles count OR tiles size. |
|
|
26 |
X axis means the arr.shape[1] coordinate, be careful! |
|
|
27 |
Tile names are used to restore the initial image after segmentation. |
|
|
28 |
|
|
|
29 |
Parameters |
|
|
30 |
---------- |
|
|
31 |
img : numpy ndarray |
|
|
32 |
The input image. |
|
|
33 |
x_tiles_cnt : integer |
|
|
34 |
Number of tiles along the x axis of img. |
|
|
35 |
y_tiles_cnt : integer |
|
|
36 |
Number of tiles along the y axis of img. |
|
|
37 |
x_tile_size : integer |
|
|
38 |
Size of tile along x axis. |
|
|
39 |
y_tile_size : integer |
|
|
40 |
Size of tile along y axis. |
|
|
41 |
base : str |
|
|
42 |
Base for tile names. |
|
|
43 |
|
|
|
44 |
Returns |
|
|
45 |
------- |
|
|
46 |
tiles : list |
|
|
47 |
List of tiles. |
|
|
48 |
tile_names : list |
|
|
49 |
List of tile names. |
|
|
50 |
""" |
|
|
51 |
if (x_tile_size is not None) and (y_tile_size is not None): |
|
|
52 |
x_tiles_cnt = img.shape[1] // x_tile_size |
|
|
53 |
y_tiles_cnt = img.shape[0] // y_tile_size |
|
|
54 |
|
|
|
55 |
if (x_tiles_cnt is not None) and (y_tiles_cnt is not None): |
|
|
56 |
x_ticks = np.linspace(0, img.shape[1], x_tiles_cnt + 1).astype(int) |
|
|
57 |
y_ticks = np.linspace(0, img.shape[0], y_tiles_cnt + 1).astype(int) |
|
|
58 |
|
|
|
59 |
else: |
|
|
60 |
raise Exception('Specify tiles count OR tiles size.') |
|
|
61 |
|
|
|
62 |
tiles = [] |
|
|
63 |
tile_names = [] |
|
|
64 |
|
|
|
65 |
for x_num, x in enumerate(zip(x_ticks[:-1], x_ticks[1:])): |
|
|
66 |
for y_num, y in enumerate(zip(y_ticks[:-1], y_ticks[1:])): |
|
|
67 |
tiles.append(img[y[0]:y[1], x[0]:x[1]]) |
|
|
68 |
tile_names.append(f'{base}_{x_num}_{y_num}') |
|
|
69 |
return tiles, tile_names |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
def prepare_test_data(tiles, tile_names, base_dir, force=False): |
|
|
73 |
""" |
|
|
74 |
Saves data in the proper way. |
|
|
75 |
|
|
|
76 |
Parameters |
|
|
77 |
---------- |
|
|
78 |
tiles : list |
|
|
79 |
List of tiles. |
|
|
80 |
tile_names : list |
|
|
81 |
List of tile names. |
|
|
82 |
base_dir : str |
|
|
83 |
Full path to base directory, 'full/path/../data_test' in normal case. |
|
|
84 |
force : bool |
|
|
85 |
Rewrite existing files |
|
|
86 |
|
|
|
87 |
Returns |
|
|
88 |
------- |
|
|
89 |
None |
|
|
90 |
""" |
|
|
91 |
|
|
|
92 |
base_dir = Path(base_dir) |
|
|
93 |
if not os.path.exists(base_dir): |
|
|
94 |
os.makedirs(base_dir) |
|
|
95 |
|
|
|
96 |
if not force and len(os.listdir(base_dir)) > 0: |
|
|
97 |
raise ValueError(f'base_dir {base_dir} is not empty, use force=True option if you want to rewrite files') |
|
|
98 |
elif len(os.listdir(base_dir)): |
|
|
99 |
dir_util.remove_tree(str(base_dir)) |
|
|
100 |
os.makedirs(base_dir) |
|
|
101 |
|
|
|
102 |
for tile, name in zip(tiles, tile_names): |
|
|
103 |
if tile.max() <= 1: |
|
|
104 |
tile = (tile * 255).astype(np.uint8) |
|
|
105 |
os.mkdir(base_dir / name) |
|
|
106 |
os.mkdir(base_dir / name / 'images') |
|
|
107 |
cv.imwrite(str(base_dir / name / 'images' / f'{name}.png'), tile) |
|
|
108 |
|
|
|
109 |
|
|
|
110 |
def restore_image(work_dir, tiff=False): |
|
|
111 |
""" |
|
|
112 |
Restores the initial image. |
|
|
113 |
|
|
|
114 |
Parameters |
|
|
115 |
---------- |
|
|
116 |
work_dir : str |
|
|
117 |
Full path to directory with files. |
|
|
118 |
tiff : bool |
|
|
119 |
Is the target image a multilayer tiff or not |
|
|
120 |
|
|
|
121 |
Returns |
|
|
122 |
------- |
|
|
123 |
img : numpy ndarray |
|
|
124 |
Initial image |
|
|
125 |
|
|
|
126 |
""" |
|
|
127 |
|
|
|
128 |
work_dir = Path(work_dir) |
|
|
129 |
|
|
|
130 |
file_names = sorted(os.listdir(work_dir), key=lambda x: get_x_and_y(x)[::-1]) |
|
|
131 |
coords = np.array([get_x_and_y(n) for n in file_names]) |
|
|
132 |
x_max, y_max = coords.max(axis=0) |
|
|
133 |
|
|
|
134 |
if tiff: |
|
|
135 |
tiles = {} |
|
|
136 |
max_number = int(0) |
|
|
137 |
for n in file_names: |
|
|
138 |
tmp = cv.imread(str(work_dir / n), -1) |
|
|
139 |
tmp = (tmp + max_number) * (tmp > 0) |
|
|
140 |
max_number = tmp.max() |
|
|
141 |
tiles[get_x_and_y(n)] = tmp.copy() |
|
|
142 |
else: |
|
|
143 |
tiles = {get_x_and_y(n): cv.imread(str(work_dir / n), -1) for n in file_names} |
|
|
144 |
|
|
|
145 |
long_tiles = [] |
|
|
146 |
|
|
|
147 |
for y in range(y_max + 1): |
|
|
148 |
long_tiles.append([]) |
|
|
149 |
for x in range(x_max + 1): |
|
|
150 |
long_tiles[-1].append(tiles[(x, y)]) |
|
|
151 |
|
|
|
152 |
long_tiles = [np.hstack(i) for i in long_tiles] |
|
|
153 |
|
|
|
154 |
return np.vstack(long_tiles) |
|
|
155 |
|
|
|
156 |
|
|
|
157 |
def perform_segmentation(full_img_path, sample_dir, network_dir, force=False, features=None): |
|
|
158 |
network_dir = Path(network_dir) |
|
|
159 |
try: |
|
|
160 |
full_img = cv.imread(full_img_path, -1) |
|
|
161 |
except cv.error: |
|
|
162 |
full_img = plt.imread(full_img_path) |
|
|
163 |
tiles, tile_names = split_image(img=full_img, x_tile_size=1000, y_tile_size=1000) |
|
|
164 |
prepare_test_data(tiles, tile_names, sample_dir, force=force) |
|
|
165 |
|
|
|
166 |
try: |
|
|
167 |
dir_util.remove_tree(str(network_dir / 'data_test')) |
|
|
168 |
except: |
|
|
169 |
pass |
|
|
170 |
os.mkdir(str(network_dir / 'data_test')) |
|
|
171 |
dir_util.copy_tree(sample_dir, str(network_dir / 'data_test')); |
|
|
172 |
|
|
|
173 |
try: |
|
|
174 |
dir_util.remove_tree(str(network_dir / 'predictions')) |
|
|
175 |
except: |
|
|
176 |
pass |
|
|
177 |
|
|
|
178 |
try: |
|
|
179 |
dir_util.remove_tree(str(network_dir / 'albu/results_test')) |
|
|
180 |
except: |
|
|
181 |
pass |
|
|
182 |
|
|
|
183 |
result_dir = str(Path(sample_dir)) + '_segmented' |
|
|
184 |
|
|
|
185 |
subprocess.run(f"cd {network_dir} && bash 'predict_test.sh'", shell=True) |
|
|
186 |
dir_util.copy_tree(str(network_dir / 'predictions'), result_dir); |
|
|
187 |
|
|
|
188 |
if features is not None: |
|
|
189 |
NucleiFeatures(f'{result_dir}/lgbm_test_sub2', sample_dir, |
|
|
190 |
features=features).df().to_csv(f'{result_dir}/{os.path.split(sample_dir)[1]}.csv', |
|
|
191 |
index=False) |
|
|
192 |
|
|
|
193 |
|
|
|
194 |
def color_tiff(img, n=60): |
|
|
195 |
img = img % n |
|
|
196 |
seg_color = np.zeros((*img.shape, 3), dtype=np.uint8) |
|
|
197 |
for i in tqdm(range(1, img.max() + 1)): |
|
|
198 |
seg_color[img == i] = np.random.randint(0, 255, 3) |
|
|
199 |
return seg_color |