--- a +++ b/README.md @@ -0,0 +1,43 @@ +# Segmentation of nuclei using DSB-2018 top-1 neural network model +Based on [selimsef/dsb2018_topcoders](https://github.com/selimsef/dsb2018_topcoders/) + +For comparison of Data Science Bowl 2018 best segmentation models see [Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl, Juan C. Caicedo et al](https://www.nature.com/articles/s41592-019-0612-7). + +## Installation +1. Clone this repository + +``` +git clone https://github.com/yozhikoff/segmentation.git +``` + +2. Download [this](https://www.dropbox.com/s/qvtgbz0bnskn9wu/dsb2018_topcoders.zip?dl=0) and extract it to the +segmentation folder, replace all existing files using `Ay` keys when unzip asks about it. Note that you need to export to `/repo/segmentation/dsb2018_topcoders` withing the repo. + +``` +wget https://www.dropbox.com/s/qvtgbz0bnskn9wu/dsb2018_topcoders.zip?dl=1 dsb2018_topcoders.zip # note dl=1 +unzip /path/to/zip/dsb2018_topcoders.zip -d /path/to/repo/segmentation/dsb2018_topcoders #type "Ay" when it asks about conflicts +``` + +3. Go to the segmentation folder and reset git files + +```shell script +cd /path/to/repo/segmentation +git reset --hard +``` + +4. Create new conda env +``` +conda create -n seg python=3.6.9 -y +conda activate seg +``` +5) Install packages via conda and pip, simply (inside your conda env!) + +``` +sh ./install.sh +``` +6) Test your installation using +``` +python run_test.py +``` + +You can also try `example_notebook.ipynb` if you want to see usage details.