Diff of /README.md [000000] .. [16dd74]

Switch to unified view

a b/README.md
1
# Segmentation of nuclei using DSB-2018 top-1 neural network model
2
Based on [selimsef/dsb2018_topcoders](https://github.com/selimsef/dsb2018_topcoders/)
3
4
For comparison of Data Science Bowl 2018 best segmentation models see [Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl, Juan C. Caicedo et al](https://www.nature.com/articles/s41592-019-0612-7).  
5
6
## Installation
7
1. Clone this repository
8
9
```
10
git clone https://github.com/yozhikoff/segmentation.git
11
```
12
13
2. Download [this](https://www.dropbox.com/s/qvtgbz0bnskn9wu/dsb2018_topcoders.zip?dl=0) and extract it to the
14
segmentation folder, replace all existing files using `Ay` keys when unzip asks about it. Note that you need to export to `/repo/segmentation/dsb2018_topcoders` withing the repo.
15
16
```
17
wget https://www.dropbox.com/s/qvtgbz0bnskn9wu/dsb2018_topcoders.zip?dl=1 dsb2018_topcoders.zip # note dl=1
18
unzip /path/to/zip/dsb2018_topcoders.zip -d /path/to/repo/segmentation/dsb2018_topcoders #type "Ay" when it asks about conflicts
19
```
20
21
3. Go to the segmentation folder and reset git files
22
23
```shell script
24
cd /path/to/repo/segmentation
25
git reset --hard
26
```
27
28
4. Create new conda env
29
``` 
30
conda create -n seg python=3.6.9 -y
31
conda activate seg
32
``` 
33
5) Install packages via conda and pip, simply (inside your conda env!)
34
35
```
36
sh ./install.sh
37
```
38
6) Test your installation using
39
```
40
python run_test.py
41
```
42
43
You can also try `example_notebook.ipynb` if you want to see usage details.