Download this file

227 lines (168 with data), 9.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from torch import nn
from torch import optim
import tqdm
import numpy as np
import torch
import math
from reproducibility.embedders.internal_datasets import CLIPImageCaptioningDataset, CLIPCaptioningDataset, CLIPImageDataset
from reproducibility.embedders.transform import _train_transform
from reproducibility.embedders.scheduler import cosine_lr
from torch.utils.data import DataLoader
from datetime import datetime
def unwrap_model(model):
if hasattr(model, 'module'):
return model.module
else:
return model
def zero_shot_classification(model, preprocess, images, labels, device, num_workers=1, batch_size=32):
image_embeddings = image_embedder(model, preprocess, images, device, num_workers, batch_size)
text_embeddings = text_embedder(model, labels, device, num_workers, batch_size)
score = image_embeddings.dot(text_embeddings.T)
predictions = [labels[np.argmax(i)] for i in score]
return predictions
def image_embedder(model, preprocess, list_of_images, device="cuda", num_workers=1, batch_size=32):
train_dataset = CLIPImageDataset(list_of_images, preprocess)
dataloader = DataLoader(train_dataset, batch_size=batch_size, num_workers=num_workers)
image_embeddings = []
total = len(list_of_images) // batch_size
pbar = tqdm.tqdm(total=total, position=0)
with torch.no_grad():
for images in dataloader:
images = images.to(device)
image_embeddings.extend(model.encode_image(images).detach().cpu().numpy())
pbar.update(1)
pbar.close()
image_embeddings = np.array(image_embeddings)
image_embeddings = image_embeddings / np.linalg.norm(image_embeddings, axis=1, keepdims=True)
return image_embeddings
def text_embedder(model, list_of_labels, device="cuda", num_workers=1, batch_size=32):
train_dataset = CLIPCaptioningDataset(list_of_labels)
dataloader = DataLoader(train_dataset, batch_size=batch_size, num_workers=num_workers)
text_embeddings = []
total = len(list_of_labels) // batch_size
pbar = tqdm.tqdm(total=total, position=0)
with torch.no_grad():
for captions in dataloader:
idx = clip.tokenize(captions, truncate=True).to(device)
text_embeddings.extend(model.encode_text(idx).detach().cpu().numpy())
pbar.update(1)
pbar.close()
text_embeddings = np.array(text_embeddings)
text_embeddings = text_embeddings / np.linalg.norm(text_embeddings, axis=1, keepdims=True)
return text_embeddings
def convert_models_to_fp32(model):
for p in model.parameters():
p.data = p.data.float()
p.grad.data = p.grad.data.float()
class CLIPTuner:
def __init__(self, args=None, logging=None, model_type="ViT-B/32", lr=5e-5, weight_decay=0.2, warmup=50, comet_tracking=None, px_size=224, comet_tags=None):
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.args = args
self.logging = logging
self.model, self.preprocess = clip.load(model_type,
device=self.device,
jit=False) # Must set jit=False for training
self.warmup = warmup
self.train_preprocess = _train_transform(first_resize = self.args.first_resize,
n_px = self.args.pxsize
)
if self.device == "cpu":
self.model.float()
else:
clip.model.convert_weights(self.model)
self.hyper_params = {
"lr": lr,
"weight_decay": weight_decay
}
#self.experiment.log_parameters(self.hyper_params)
self.loss_img = nn.CrossEntropyLoss()
self.loss_txt = nn.CrossEntropyLoss()
if self.args.optimizer == 'AdamW':
self.optimizer = optim.AdamW(self.model.parameters(),
lr=self.hyper_params["lr"],
weight_decay=self.hyper_params["weight_decay"])
elif self.args.optimizer == 'Adagrad':
self.optimizer = optim.Adagrad(self.model.parameters(),
lr=self.hyper_params["lr"],
weight_decay=self.hyper_params["weight_decay"])
elif self.args.optimizer == 'Adam':
self.optimizer = optim.Adagrad(self.model.parameters(),
lr=self.hyper_params["lr"],
weight_decay=self.hyper_params["weight_decay"])
def valid_evaluation(self, clip, validation_dataloader, pbar):
valid_loss_this_epoch = 0
for batch in validation_dataloader:
pbar.set_description("Currently Validating")
with torch.no_grad():
list_image, list_txt = batch
images = list_image
images = images.to(self.device)
texts = clip.tokenize(list_txt, truncate=True).to(self.device)
logits_per_image, logits_per_text = self.model(images, texts)
logits_per_image = logits_per_image
logits_per_text = logits_per_text
ground_truth = torch.arange(len(images), dtype=torch.long, device=self.device)
total_loss = (self.loss_img(logits_per_image, ground_truth) +
self.loss_txt(logits_per_text, ground_truth)) / 2
valid_loss_this_epoch += total_loss.cpu().data.numpy()
#self.experiment.log_metric("validation_loss", total_loss.item(), step=step)
return valid_loss_this_epoch
def tuner(self, train_dataframe, validation_dataframe, save_directory, batch_size=4, epochs=5,
evaluation_steps=500, num_workers=1):
start_time = str(datetime.now())
train_dataset = CLIPImageCaptioningDataset(train_dataframe, self.train_preprocess)
validation_dataset = CLIPImageCaptioningDataset(validation_dataframe, self.preprocess)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, num_workers=num_workers)
validation_dataloader = DataLoader(validation_dataset, batch_size=batch_size, num_workers=num_workers)
num_batches_per_epoch = len(train_dataloader)
total_steps = len(train_dataloader) * epochs
scheduler = cosine_lr(self.optimizer, self.hyper_params["lr"], self.warmup, total_steps)
#with self.experiment.train():
for epoch in range(epochs):
pbar = tqdm.tqdm(position=0, total=len(train_dataloader))
pbar.set_description(f"{epoch}/{epochs}")
train_loss_this_epoch = 0
for i, batch in enumerate(train_dataloader):
self.optimizer.zero_grad()
step = num_batches_per_epoch * epoch + i
scheduler(step)
list_image, list_txt = batch
images = list_image
images = images.to(self.device)
texts = clip.tokenize(list_txt, truncate=True).to(self.device)
logits_per_image, logits_per_text = self.model(images, texts)
logit_scale = self.model.logit_scale.exp()
#self.experiment.log_metric("logit_scale", logit_scale.item(), step=step)
logits_per_image = logits_per_image
logits_per_text = logits_per_text
ground_truth = torch.arange(len(images), dtype=torch.long, device=self.device)
total_loss = (self.loss_img(logits_per_image, ground_truth) + self.loss_txt(logits_per_text,
ground_truth)) / 2
total_loss.backward()
new_lr = scheduler(step)
train_loss_this_epoch += total_loss.cpu().data.numpy()
self.logging.info(f'[Train - this batch] epoch: {epoch}, batch: {i}, new learning rate: {new_lr}')
#self.experiment.log_metric("learning_rate", new_lr, step=step)
if self.device == "cpu":
self.optimizer.step()
else:
convert_models_to_fp32(self.model)
self.optimizer.step()
clip.model.convert_weights(self.model)
pbar.update(1)
with torch.no_grad():
unwrap_model(self.model).logit_scale.clamp_(0, math.log(100))
if step % evaluation_steps == 0:
valid_loss_this_epoch = self.valid_evaluation(clip, validation_dataloader, pbar)
pbar.set_description(f"{epoch}/{epochs}")
self.logging.info(f'[Validation - this batch] epoch: {epoch}, batch: {i}, total loss: {valid_loss_this_epoch}')
train_loss_this_epoch += total_loss.cpu().data.numpy()
self.logging.info(f'[Train - final] epoch: {epoch}, total loss: {train_loss_this_epoch}')
# Validation at the end of each epoch
valid_loss_this_epoch = self.valid_evaluation(clip, validation_dataloader, pbar)
pbar.set_description(f"{epoch}/{epochs}")
self.logging.info(f'[Validation - final] epoch: {epoch}, total loss: {valid_loss_this_epoch}')
torch.save(self.model.state_dict(), f"{save_directory}/epoch_{epoch}"
f"_{start_time}_model.pt")
pbar.close()
return f"_{start_time}_model.pt"