import sys
sys.path.append("../../")
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import argparse
import logging
from reproducibility.embedders.factory import EmbedderFactory
from reproducibility.evaluation.retrieval.retrieval import ImageRetrieval
import pandas as pd
from dotenv import load_dotenv
import os
from reproducibility.utils.results_handler import ResultsHandler
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
def config():
load_dotenv("../config.env")
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="plip", type=str)
parser.add_argument("--caption_column", default="captions", type=str)
parser.add_argument("--backbone", default='default', type=str)
parser.add_argument("--dataset", type=str)
parser.add_argument("--seed", default=1, type=int)
return parser.parse_args()
if __name__ == "__main__":
args = config()
data_folder = os.environ["PC_EVALUATION_DATA_ROOT_FOLDER"]
if args.model_name == "plip" and args.backbone == "default":
args.backbone = os.environ["PC_DEFAULT_BACKBONE"]
test_dataset_name = args.dataset + "_retrieval.tsv"
test_dataset = pd.read_csv(os.path.join(data_folder, test_dataset_name), sep='\t')
embedder = EmbedderFactory().factory(args)
image_embeddings = embedder.image_embedder(test_dataset["images"].tolist(),
additional_cache_name=test_dataset_name)
# embeddings are generated using the selected caption, not the labels
text_embeddings = embedder.text_embedder(test_dataset[args.caption_column].tolist(),
additional_cache_name=test_dataset_name)
prober = ImageRetrieval()
results = prober.retrieval(image_embeddings, text_embeddings)
additional_parameters = {'dataset': args.dataset, 'seed': args.seed,
'model': args.model_name, 'backbone': args.backbone}
rs = ResultsHandler(args.dataset, "retrieval", additional_parameters)
rs.add(results)