[7829e6]: / reproducibility / scripts / fine_tuning_train.py

Download this file

242 lines (203 with data), 11.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import sys
sys.path.append("../../")
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import argparse
import logging
import time
import pandas as pd
from sklearn.model_selection import train_test_split
from dotenv import load_dotenv
import os
opj = os.path.join
import glob
import numpy as np
def torch_init(random_seed):
torch.cuda.empty_cache()
torch.cuda.manual_seed_all(random_seed)
torch.manual_seed(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def convert_dataset_labels(args, df):
#TODO This is currently hard-coded. May need to refactorize.
df = df[['image', 'label']] # this is hard-coded
df['image'] = df['image'].str.replace('pathtweets_data_20230211', 'pathtweets_data_20230426')
if args.dataset.startswith('Kather'):
label2digit = {'ADI':0, 'BACK':1, 'DEB':2, 'LYM':3, 'MUC':4, 'MUS':5, 'NORM':6, 'STR':7, 'TUM':8}
df['label'] = df['label'].apply(lambda v: label2digit[v])
elif args.dataset in ['DigestPath', 'PanNuke', 'WSSS4LUAD_binary']:
df['label'] = df['label'].astype(int)
else:
raise Exception('No dataset available.')
return df
def tune_model(args, train, valid, test=None, logging=None):
# re-initialize torch at every training.
torch_init(args.random_seed)
from reproducibility.fine_tuning.finetune import FineTuner
if args.model_name == 'clip':
backbone = None
elif args.model_name == "plip":
backbone = args.backbone # re-defined in previous line.
else:
backbone = None
cpt = FineTuner(args=args,
logging=logging,
backbone=backbone,
num_classes=args.num_classes,
lr=args.learning_rate,
weight_decay=args.weight_decay,
comet_tracking=args.comet_tracking,
comet_tags=args.comet_tags
)
performance = cpt.tuner(train, valid, test,
save_directory=args.save_directory,
batch_size=args.batch_size,
epochs=args.epochs,
evaluation_steps=args.evaluation_steps,
num_workers=args.num_workers
)
return performance
def config():
load_dotenv("../config.env")
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="plip", type=str, help='choose from: plip, vit-b-32')
parser.add_argument("--backbone", default='default', type=str)
parser.add_argument("--dataset", default="Kather_train", type=str, choices=['Kather_train', 'PanNuke', 'WSSS4LUAD_binary', 'DigestPath'])
## Fine-tuning hparams
parser.add_argument("--batch-size", default=128, type=int)
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument("--percentage_of_training_data", default=1.0, type=float,
help="""The ratio of the training data (range 0.0 - 1.0).
If value = 1, use all training data to fine-tune.
If value = 0.2, use 20%% of the training data to fine-tune.""")
parser.add_argument("--valid_ratio", default=0.3, type=float,
help="""The ratio of the validation set that came from training data.
If sub-sampling was performed on the training data, the validation set
is generated using the sub-sampled portion.""")
# Deprecate learning-rate: set it in for loop.
#parser.add_argument("--learning-rate", default=1e-5, type=float)
parser.add_argument("--weight-decay", default=0.1, type=float)
parser.add_argument("--epochs", default=10, type=int)
parser.add_argument("--optimizer", default='AdamW', type=str)
parser.add_argument("--evaluation-steps", default=0, type=int, help='set to 0 to disable the evalutation steps (only evaluate at the end of each epoch)')
parser.add_argument("--save_directory", default='/oak/stanford/groups/jamesz/pathtweets/results/fine_tuning')
parser.add_argument("--comet-tracking", default=False)
parser.add_argument("--comet_tags", nargs="*")
parser.add_argument("--random_seed", default=0, type=int)
return parser.parse_args()
if __name__ == "__main__":
args = config()
np.random.seed(args.random_seed)
data_folder = os.environ["PC_EVALUATION_DATA_ROOT_FOLDER"]
args.PC_CLIP_ARCH = os.environ["PC_CLIP_ARCH"]
if args.model_name == "plip" and args.backbone == "default":
args.backbone = os.environ["PC_DEFAULT_BACKBONE"]
print('Now working on:')
print(f' Dataset: {args.dataset}')
print(f' Model: {args.model_name}')
print(f' Backbone: {args.backbone}')
###############################################################
# Step 1. Prepare the dataset
###############################################################
if args.dataset == 'Kather_train':
'''
Note:
Kather_train is the dataset only from 100K training data.
We then split 10% of the original 100K data into testing set.
'''
train_dataset_name = "Kather_train.csv"
train_dataset = pd.read_csv(os.path.join(data_folder, train_dataset_name))
train_dataset, test_dataset = train_test_split(train_dataset,
test_size=0.1,
random_state=args.random_seed,
shuffle=True)
else:
train_dataset_name = args.dataset + "_train.csv"
test_dataset_name = args.dataset + "_test.csv"
train_dataset = pd.read_csv(os.path.join(data_folder, train_dataset_name))
test_dataset = pd.read_csv(os.path.join(data_folder, test_dataset_name))
train_dataset = convert_dataset_labels(args, train_dataset)
test_dataset = convert_dataset_labels(args, test_dataset)
args.num_classes = len(train_dataset['label'].unique())
###############################################################
# Step 2. Subsmple & shuffle dataset
###############################################################
# Regardless of whether the fraction = 1 or not, we still need to execute this section of the code to ensure the training data is shuffled.
print('Subsample dataset (few-shot)')
print(f'Number of training data before sub-sampling: {len(train_dataset)}')
train_dataset = train_dataset.sample(frac=args.percentage_of_training_data, random_state=args.random_seed)
print(f'Number of training data after sub-sampling : {len(train_dataset)}')
###############################################################
# Step 3. Prepare training and validation splits and create save path.
###############################################################
train, valid = train_test_split(train_dataset,
test_size=args.valid_ratio,
random_state=args.random_seed,
shuffle=True)
'''
valid, test_dataset = train_test_split(valid,
test_size=0.5,
random_state=args.random_seed,
shuffle=True)
'''
print(f'Number of training: {len(train)} / validation: {len(valid)} / testing: {len(test_dataset)}')
TIMESTRING = time.strftime("%Y%m%d-%H.%M.%S", time.localtime())
if args.model_name == 'plip':
savesubdir = f'PLIP_btch={args.batch_size}_wd={args.weight_decay}_nepochs={args.epochs}_'+\
f'validratio={args.valid_ratio}_optimizer={args.optimizer}'
else:
savesubdir = f'{args.model_name}'
args.save_directory = opj(args.save_directory, args.dataset, f'train_ratio={args.percentage_of_training_data}', savesubdir, f'random_seed={args.random_seed}_{TIMESTRING}')
os.makedirs(args.save_directory, exist_ok=True)
matching_pattern = opj(args.save_directory, args.dataset, f'train_ratio={args.percentage_of_training_data}', savesubdir, f'random_seed={args.random_seed}_*', 'performance_test_*.tsv')
matching_files = glob.glob(matching_pattern)
if len(matching_files) > 0:
print('A result with same seed already existed. Exit.')
exit()
args_df = pd.DataFrame(vars(args),index=['Value']).T
args_df.to_csv(opj(args.save_directory, 'arguments.csv'))
print('------------------------------')
print(args_df)
print('------------------------------')
logging.basicConfig(filename=opj(args.save_directory, '_training.log'),
format='%(asctime)s.%(msecs)03d *** %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
encoding='utf-8',
level=logging.INFO
)
args.comet_tracking = None
###############################################################
# Step 4. Run Train-validation to find hyper-parameter
###############################################################
lr_search_list = [1e-6, 1e-5, 1e-4, 1e-3, 1e-2]
print('==================================')
print('Learning rate will be searched on:')
print(lr_search_list)
print('==================================')
all_performance = pd.DataFrame()
for lr in lr_search_list:
print(f'Current learning rate: {lr}')
logging.info(f'Current learning rate: {lr}')
args.learning_rate = lr
performance = tune_model(args, train, valid, test_dataset, logging=logging)
performance['learning_rate'] = args.learning_rate
print(performance)
all_performance = pd.concat([all_performance, performance], axis=0).reset_index(drop=True)
all_performance.to_csv(opj(args.save_directory, f'performance_val.tsv'), sep='\t')
print(all_performance)
# Evaluate at max epoch:
perf_maxepoch = all_performance.loc[all_performance['epoch'] == (args.epochs-1)]
best_lr = perf_maxepoch['learning_rate'][perf_maxepoch['f1_weighted'].idxmax()]
print(f"Best learning rate: {best_lr}")
logging.info(f"Best learning rate: {best_lr}")
###############################################################
# Step 5. Use the best hyperparameter and retrain the model
# by combining training and validation split.
###############################################################
args.learning_rate = best_lr
# Shuffle the rows
train_dataset = train_dataset.sample(frac=1, random_state=args.random_seed)
performance_test = tune_model(args, train_dataset, test_dataset, logging=logging)
performance_test['learning_rate'] = args.learning_rate
print(performance_test)
performance_test.to_csv(opj(args.save_directory, f'performance_test_best_lr={args.learning_rate}.tsv'), sep='\t')