[7829e6]: / reproducibility / scripts / fine_tuning_analysis.py

Download this file

198 lines (162 with data), 9.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import sys
sys.path.append("../../")
import argparse
import logging
import time
import pandas as pd
from sklearn.model_selection import train_test_split
import os
opj = os.path.join
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import glob
import copy
sys.path.insert(0, '/oak/stanford/groups/jamesz/pathtweets/ML_scripts/utils')
import install_font
def config():
parser = argparse.ArgumentParser()
parser.add_argument("--percentage_of_training_data", default=1.0, type=float,
help="""The ratio of the training data (range 0.0 - 1.0).
If value = 1, use all training data to fine-tune.
If value = 0.2, use 20%% of the training data to fine-tune.""")
parser.add_argument("--valid_ratio", default=0.3, type=float,
help="""The ratio of the validation set that came from training data.
If sub-sampling was performed on the training data, the validation set
is generated using the sub-sampled portion.""")
parser.add_argument("--batch-size", default=128, type=int)
parser.add_argument("--weight-decay", default=0.1, type=float)
parser.add_argument("--epochs", default=10, type=int)
parser.add_argument("--optimizer", default='AdamW', type=str)
parser.add_argument("--save_directory", default='/oak/stanford/groups/jamesz/pathtweets/results/fine_tuning')
return parser.parse_args()
if __name__ == "__main__":
args = config()
datasets = ['Kather_train', 'PanNuke', 'DigestPath', 'WSSS4LUAD_binary']
train_ratios = [0.01, 0.05, 0.1, 0.5, 1]
model_list = ['plip','vit_b_32']
###############################################################
# Step 1. Get all results
###############################################################
random_seeds = np.arange(10)
multicol = pd.MultiIndex.from_product([datasets, train_ratios, random_seeds], names=['dataset','train_ratio','random_seed'])
perf_df = pd.DataFrame(index=model_list, columns=multicol)
for dataset in datasets:
for model in model_list:
for train_ratio in train_ratios:
for random_seed in random_seeds:
if model == 'plip':
savesubdir = f'PLIP_btch={args.batch_size}_wd={args.weight_decay}_nepochs={args.epochs}_validratio={args.valid_ratio}_optimizer={args.optimizer}'
else:
savesubdir = f'{model}'
# Get result folder
result_folder = None
result_parent_folder = opj(args.save_directory, dataset, f'train_ratio={float(train_ratio)}', savesubdir)
if not os.path.exists(result_parent_folder): continue
result_seed_dirs = os.listdir(result_parent_folder)
result_folder = [opj(result_parent_folder, v) for v in result_seed_dirs if int(v.split('random_seed=')[1].split('_')[0]) == random_seed]
result_folder = np.sort(result_folder)
if len(result_folder) == 1:
result_folder = result_folder[0]
elif len(result_folder) > 1:
#result_folder = result_folder[-1]
# find out which folder contains the result.
result_found = False
for rs in result_folder:
matching_files = glob.glob(opj(rs, 'performance_test_*.tsv'))
if len(matching_files):
result_folder = rs
result_found = True
break
if not result_found:
result_folder = result_folder[-1]
else:
#raise Exception('Parent folder exists but empty inside.')
continue
# Get test performance
candidate_filenames = np.array(os.listdir(result_folder)).astype(str)
test_csv_filename = None
test_csv_filename = [opj(result_folder, v) for v in candidate_filenames if v.startswith('performance_test_best_lr')]
if len(test_csv_filename) == 0:
continue
elif len(test_csv_filename) == 1:
test_csv_filename = test_csv_filename[0]
else:
raise Exception('This does not make sense.')
test_performance = pd.read_csv(test_csv_filename, sep='\t', index_col=0)
#print(test_performance)
f1_w = test_performance['f1_weighted'].values[-1]
perf_df.loc[model, (dataset, train_ratio, random_seed)] = f1_w
print('---------------------------------------------------------')
#print(perf_df.astype(float).round(decimals=3).T)
for dataset in datasets:
temp = perf_df.loc[:, perf_df.columns.get_level_values('dataset')==dataset]
print(f'Dataset: {dataset}')
print(temp.astype(float).round(decimals=3).T)
#######################################
# Aggregate performance across four datasets and get mean
#######################################
multicol = pd.MultiIndex.from_product([datasets, train_ratios], names=['dataset','train_ratio'])
perf_df_mean = pd.DataFrame(index=perf_df.index, columns=multicol)
for model in perf_df.index:
for dataset in datasets:
for train_ratio in train_ratios:
val = perf_df.loc[model, (perf_df.columns.get_level_values('dataset')== dataset) & (perf_df.columns.get_level_values('train_ratio')== train_ratio)]
if np.isnan(val.values.astype(float)).all():
continue
mean = np.nanmean(val.values)
std = np.nanstd(val.values)
perf_df_mean.loc[model, (dataset, train_ratio)] = f'{mean:.3f}±{std:.3f}'
print('---------------------------------------------------------')
print('Mean performance by averaging datasets')
print(perf_df_mean)
###################################################################
# Now start plotting
###################################################################
savedir = '/oak/stanford/groups/jamesz/pathtweets/results/fine_tuning/__figures'
os.makedirs(savedir, exist_ok=True)
# Move the second level of columns to the second index level
temp_df = copy.deepcopy(perf_df_mean)
temp_df.columns = temp_df.columns.set_levels(temp_df.columns.levels[1], level=1)
temp_df = temp_df.stack(level=1)
temp_df.reset_index(level=[0, 1], drop=False, inplace=True)
temp_df.sort_values(by='train_ratio', inplace=True)
temp_df.to_csv(opj(savedir, 'perf_mean.csv'))
number_of_train_data = {'Kather_train': 90000, 'PanNuke': 4346, 'DigestPath': 43899, 'WSSS4LUAD_binary': 7063}
axis_label = ['a','b','c','d']
fig, ax = plt.subplots(1, len(datasets), figsize=(16,4), sharey=False)
for i, dataset in enumerate(datasets):
this_perf_df = perf_df.loc[:, perf_df.columns.get_level_values('dataset')==dataset]
# Rename the index
this_perf_df.rename(index={'vit_b_32': 'ViT-B/32',
'plip': 'PLIP image encoder'}, inplace=True)
this_perf_df = this_perf_df.stack()
#print(this_perf_df)
# Set the x-axis label and tick labels
ax[i].set_xlabel('Proportion of training data used')
xticks = this_perf_df.columns.get_level_values('train_ratio')
n_datas = [int(np.round(v*number_of_train_data[dataset])) for v in this_perf_df.columns.get_level_values('train_ratio')]
xticks = ['%d%%\n(N=%d)' % (v*100, n_data) for v, n_data in zip(xticks, n_datas)]
ax[i].set_xticks(range(len(this_perf_df.columns)), xticks, rotation=0)
ax[i].text(-0.15, 1.05, f'{axis_label[i]}', transform=ax[i].transAxes, fontweight='bold', fontsize=16)
this_perf_df.columns = np.arange(len(this_perf_df.columns))
sns.lineplot(data=this_perf_df.T,
palette=sns.color_palette("muted", len(this_perf_df)),
marker='o',
errorbar=('ci', 95),
#errorbar=('sd'),
ax=ax[i]
)
# Set the y-axis label
ax[i].set_ylabel('Weighted F1')
# Set the y-axis to display values with two digits
ax[i].yaxis.set_major_formatter('{x:.2f}')
# Set the title
if dataset == 'Kather_train':
dataset = 'Kather colon (training split)'
elif dataset == 'WSSS4LUAD_binary':
dataset = 'WSSS4LUAD'
ax[i].set_title(dataset)
fig.tight_layout()
fig.savefig(opj(savedir,'performance.png'), dpi=300)
fig.savefig(opj(savedir,'performance.pdf'))