--- a/README.md
+++ b/README.md
@@ -1,73 +1,72 @@
-# Pathology Language and Image Pre-Training (PLIP)
-
-Pathology Language and Image Pre-Training (PLIP) is the first vision and language foundation model for Pathology AI. PLIP is a large-scale pre-trained model that can be used to extract visual and language features from pathology images and text description.
-The model is a fine-tuned version of the original CLIP model.
-
-
-![PLIP](assets/banner.png "A visualโ€“language foundation model for pathology AI")
-
-
-## Resources
-- ๐Ÿ“š [Official Demo](https://huggingface.co/spaces/vinid/webplip)
-- ๐Ÿ“š [PLIP on HuggingFace](https://huggingface.co/vinid/plip)
-- ๐Ÿ“š [Paper](https://www.nature.com/articles/s41591-023-02504-3)
-
-
-### Internal API Usage
-
-```python
-    from plip.plip import PLIP
-    import numpy as np
-    
-    plip = PLIP('vinid/plip')
-    
-    # we create image embeddings and text embeddings
-    image_embeddings = plip.encode_images(images, batch_size=32)
-    text_embeddings = plip.encode_text(texts, batch_size=32)
-    
-    # we normalize the embeddings to unit norm (so that we can use dot product instead of cosine similarity to do comparisons)
-    image_embeddings = image_embeddings/np.linalg.norm(image_embeddings, ord=2, axis=-1, keepdims=True)
-    text_embeddings = text_embeddings/np.linalg.norm(text_embeddings, ord=2, axis=-1, keepdims=True)
-```
-
-### HuggingFace API Usage
-
-```python
-
-    from PIL import Image
-    from transformers import CLIPProcessor, CLIPModel
-    
-    model = CLIPModel.from_pretrained("vinid/plip")
-    processor = CLIPProcessor.from_pretrained("vinid/plip")
-    
-    image = Image.open("images/image1.jpg")
-    
-    inputs = processor(text=["a photo of label 1", "a photo of label 2"],
-                       images=image, return_tensors="pt", padding=True)
-    
-    outputs = model(**inputs)
-    logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
-    probs = logits_per_image.softmax(dim=1)  
-    print(probs)
-    image.resize((224, 224))
-
-```
-
-### Citation
-
-If you use PLIP in your research, please cite the following paper:
-
-```bibtex
-    @article{huang2023visual,
-    title={A visual--language foundation model for pathology image analysis using medical Twitter},
-    author={Huang, Zhi and Bianchi, Federico and Yuksekgonul, Mert and Montine, Thomas J and Zou, James},
-    journal={Nature Medicine},
-    pages={1--10},
-    year={2023},
-    publisher={Nature Publishing Group US New York}
-}
-```
-
-### Acknowledgements
-
+# Pathology Language and Image Pre-Training (PLIP)
+
+Pathology Language and Image Pre-Training (PLIP) is the first vision and language foundation model for Pathology AI. PLIP is a large-scale pre-trained model that can be used to extract visual and language features from pathology images and text description.
+The model is a fine-tuned version of the original CLIP model.
+
+
+
+
+## Resources
+- ๐Ÿ“š [Official Demo](https://huggingface.co/spaces/vinid/webplip)
+- ๐Ÿ“š [PLIP on HuggingFace](https://huggingface.co/vinid/plip)
+- ๐Ÿ“š [Paper](https://www.nature.com/articles/s41591-023-02504-3)
+
+
+### Internal API Usage
+
+```python
+    from plip.plip import PLIP
+    import numpy as np
+    
+    plip = PLIP('vinid/plip')
+    
+    # we create image embeddings and text embeddings
+    image_embeddings = plip.encode_images(images, batch_size=32)
+    text_embeddings = plip.encode_text(texts, batch_size=32)
+    
+    # we normalize the embeddings to unit norm (so that we can use dot product instead of cosine similarity to do comparisons)
+    image_embeddings = image_embeddings/np.linalg.norm(image_embeddings, ord=2, axis=-1, keepdims=True)
+    text_embeddings = text_embeddings/np.linalg.norm(text_embeddings, ord=2, axis=-1, keepdims=True)
+```
+
+### HuggingFace API Usage
+
+```python
+
+    from PIL import Image
+    from transformers import CLIPProcessor, CLIPModel
+    
+    model = CLIPModel.from_pretrained("vinid/plip")
+    processor = CLIPProcessor.from_pretrained("vinid/plip")
+    
+    image = Image.open("images/image1.jpg")
+    
+    inputs = processor(text=["a photo of label 1", "a photo of label 2"],
+                       images=image, return_tensors="pt", padding=True)
+    
+    outputs = model(**inputs)
+    logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
+    probs = logits_per_image.softmax(dim=1)  
+    print(probs)
+    image.resize((224, 224))
+
+```
+
+### Citation
+
+If you use PLIP in your research, please cite the following paper:
+
+```bibtex
+    @article{huang2023visual,
+    title={A visual--language foundation model for pathology image analysis using medical Twitter},
+    author={Huang, Zhi and Bianchi, Federico and Yuksekgonul, Mert and Montine, Thomas J and Zou, James},
+    journal={Nature Medicine},
+    pages={1--10},
+    year={2023},
+    publisher={Nature Publishing Group US New York}
+}
+```
+
+### Acknowledgements
+
 The internal API has been **copied** from FashionCLIP.
\ No newline at end of file