[278d8a]: / reproducibility / scripts / zero_shot_evaluation.py

Download this file

73 lines (50 with data), 2.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import sys
sys.path.append("../../")
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import argparse
import numpy as np
import logging
from reproducibility.embedders.factory import EmbedderFactory
from reproducibility.evaluation.zero_shot.zero_shot import ZeroShotClassifier
import pandas as pd
from dotenv import load_dotenv
import os
from reproducibility.utils.results_handler import ResultsHandler
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
def config():
load_dotenv("../config.env")
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="plip", type=str)
parser.add_argument("--caption_column", default="text_style_4", type=str,
help="text_style_4 serves as the most intuitive prompt formulation for describing the image: An H&E image of XXX. On the other hand, text_style_0 simply acts as a categorical label for XXX.")
parser.add_argument("--backbone", default='default', type=str)
parser.add_argument("--dataset", default="kather", type=str)
parser.add_argument("--batch-size", default=128, type=int)
parser.add_argument("--num-workers", default=4, type=int)
parser.add_argument("--seed", default=1, type=int)
## Probe hparams
parser.add_argument("--alpha", default=0.01, type=float)
return parser.parse_args()
if __name__ == "__main__":
args = config()
np.random.seed(args.seed)
data_folder = os.environ["PC_EVALUATION_DATA_ROOT_FOLDER"]
if args.model_name == "plip" and args.backbone == "default":
args.backbone = os.environ["PC_DEFAULT_BACKBONE"]
test_dataset_name = args.dataset + "_test.csv"
test_dataset = pd.read_csv(os.path.join(data_folder, test_dataset_name))
embedder = EmbedderFactory().factory(args)
test_x = embedder.image_embedder(test_dataset["image"].tolist(),
additional_cache_name=test_dataset_name, batch_size=512)
labels = test_dataset["label"].unique().tolist()
# embeddings are generated using the selected caption, not the labels
test_y = embedder.text_embedder(test_dataset[args.caption_column].unique().tolist(),
additional_cache_name=test_dataset_name, batch_size=512)
prober = ZeroShotClassifier()
results = prober.zero_shot_classification(test_x, test_y,
unique_labels=labels, target_labels=test_dataset["label"].tolist())
additional_parameters = {'dataset': args.dataset, 'seed': args.seed,
'model': args.model_name, 'backbone': args.backbone}
rs = ResultsHandler(args.dataset, "zero_shot", additional_parameters)
rs.add(results)