from torch.utils.data import Dataset
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = None
class CLIPImageCaptioningDataset(Dataset):
def __init__(self, df, preprocessing):
self.images = df["image"].tolist()
self.caption = df["caption"].tolist()
self.preprocessing = preprocessing
def __len__(self):
return len(self.caption)
def __getitem__(self, idx):
images = self.preprocessing(Image.open(self.images[idx]).convert('RGB')) # preprocess from clip.load
caption = self.caption[idx]
return images, caption
class CLIPCaptioningDataset(Dataset):
def __init__(self, captions):
self.caption = captions
def __len__(self):
return len(self.caption)
def __getitem__(self, idx):
caption = self.caption[idx]
return caption
class CLIPImageDataset(Dataset):
def __init__(self, list_of_images, preprocessing):
self.images = list_of_images
self.preprocessing = preprocessing
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
images = self.preprocessing(Image.open(self.images[idx]).convert('RGB')) # preprocess from clip.load
return images
class CLIPImageLabelDataset(Dataset):
def __init__(self, df, preprocessing):
self.images = df["image"].tolist()
self.label = df["label"].tolist()
self.preprocessing = preprocessing
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
images = self.preprocessing(Image.open(self.images[idx]).convert('RGB')) # preprocess from clip.load
label = self.label[idx]
return images, label