|
a |
|
b/README.md |
|
|
1 |
# Parallelized Deep Convolutional Neural Networks for Pathology Detection and Localization in Chest X-Rays |
|
|
2 |
|
|
|
3 |
_This repository contains the code for the prototype application I developed for the Final Research Project of the |
|
|
4 |
**BSc. (Hons.) in Computer Science** degree at University of Westminster (taught at IIT Sri Lanka)_ |
|
|
5 |
|
|
|
6 |
## Authors |
|
|
7 |
|
|
|
8 |
- [Ravidu Silva](mailto:ravidus.ac@gmail.com) |
|
|
9 |
- [Pumudu Fernando (Supervisor)](mailto:pumudu.f@iit.ac.lk) |
|
|
10 |
|
|
|
11 |
## Publication |
|
|
12 |
Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification - Springer Nature |
|
|
13 |
- [https://doi.org/10.1007/s42979-022-01390-9](https://doi.org/10.1007/s42979-022-01390-9) |
|
|
14 |
|
|
|
15 |
## Project Introduction |
|
|
16 |
|
|
|
17 |
Radiography is a prevalent method of medical diagnosis, especially in humans. Out of the various types of Radiography, |
|
|
18 |
Chest Radiography holds an important place due to the numerous diseases diagnosed through it. These diseases vary from |
|
|
19 |
low-risk diseases to high-risk, life-threatening diseases. Due to this, accurate diagnosis of Chest X-Rays is considered |
|
|
20 |
very crucial. This research project presents a novel way of utilizing multiple Convolutional Neural Networks for |
|
|
21 |
accurate detection and localization of diseases present in Chest X-Ray images. The proposed algorithm creates a range of |
|
|
22 |
new pathways to conduct research in a variety of fields and use cases. The research also aims to prove the proposed |
|
|
23 |
algorithm's strengths and advantages for Chest X-Ray classification within a well-defined scope. |
|
|
24 |
|
|
|
25 |
## Project Pitch |
|
|
26 |
|
|
|
27 |
[](https://www.youtube.com/watch?v=0PmXOY-Mt1k) |
|
|
28 |
|
|
|
29 |
## Full Project Demonstration |
|
|
30 |
|
|
|
31 |
[](https://www.youtube.com/watch?v=SBVE1NVDHcA) |
|
|
32 |
|
|
|
33 |
## Technologies |
|
|
34 |
|
|
|
35 |
Following are the main technologies used in this project |
|
|
36 |
|
|
|
37 |
- Python |
|
|
38 |
- TensorFlow, Keras |
|
|
39 |
- Numpy |
|
|
40 |
- Flask |
|
|
41 |
- HTML5, CSS, JS |
|
|
42 |
|
|
|
43 |
## Application Installation |
|
|
44 |
|
|
|
45 |
### 1. Pre-requisites |
|
|
46 |
|
|
|
47 |
- Python 3.7+ |
|
|
48 |
- PIP |
|
|
49 |
- CUDA supported GPU with at least 10GB VRAM |
|
|
50 |
- CUDA installation |
|
|
51 |
|
|
|
52 |
### 2. Install Dependencies |
|
|
53 |
|
|
|
54 |
``` |
|
|
55 |
pip install -r requirements.txt |
|
|
56 |
``` |
|
|
57 |
|
|
|
58 |
### 3. Model file placement |
|
|
59 |
|
|
|
60 |
- Place the model files in their respective folders |
|
|
61 |
|
|
|
62 |
### 4. Running the Application |
|
|
63 |
|
|
|
64 |
``` |
|
|
65 |
python3 app.py --host=0.0.0.0 --port=5000 --cert=adhoc --no-reload |
|
|
66 |
``` |
|
|
67 |
|
|
|
68 |
After the execution of this line you can visit you localhost to use the application |
|
|
69 |
|
|
|
70 |
## Model Accuracy |
|
|
71 |
|
|
|
72 |
### Models Names |
|
|
73 |
|
|
|
74 |
- R-50v2: ResNet50v2 |
|
|
75 |
- D-121: DenseNet-121 |
|
|
76 |
- D-169: DenseNet-169 |
|
|
77 |
- R-D-Ens: Ensemble of ResNet50v2, DenseNet-121 and DenseNet-169 |
|
|
78 |
- P-64: ParallelXNet (ratio: 64) |
|
|
79 |
- P-128: ParallelXNet (ratio: 128) |
|
|
80 |
- P-Ens: Ensemble of P-64 and P-128 |
|
|
81 |
|
|
|
82 |
### Test results on MIMIC-CXR 2020 |
|
|
83 |
|
|
|
84 |
|Pathology \Model|R-50v2|D-121|D-169|R-D-Ens|P-64|P-128|P-Ens| |
|
|
85 |
|:--------------:|:------:| :-----:| :-----:| :-----:| :-----:| :-----:| :-----:| |
|
|
86 |
|Enlarged Cardiom.|0.7026|0.7048|**0.7209**|0.7159|0.7061|0.7076|0.7107| |
|
|
87 |
|Cardiomegaly|0.7808|0.7807|0.7888|0.7889|0.7921|0.7874|**0.7932**| |
|
|
88 |
|Lung Lesion|0.6965|0.7053|0.7111|0.7109|0.7155|0.7157|**0.7192**| |
|
|
89 |
|Lung Opacity|0.6899|0.6946|0.6967|0.7000|0.6978|0.7007|**0.7031**| |
|
|
90 |
|Edema|0.8357|0.8389|**0.8434**|0.8432|0.8403|0.8391|0.8419| |
|
|
91 |
|Consolidation|0.7475|0.7507|0.7548|0.7580|**0.7605**|0.7514|0.7597| |
|
|
92 |
|Pneumonia|0.7116|0.7228|0.7289|0.7302|0.7341|0.7303|**0.7372**| |
|
|
93 |
|Atelectasis|0.7634|0.7627|0.7668|0.7688|0.7674|0.7680|**0.7703**| |
|
|
94 |
|Pneumothorax|0.8467|0.8691|0.8640|0.8690|0.8595|**0.8711**|0.8706| |
|
|
95 |
|Pleural Effusion|0.8897|0.8921|0.8941|0.8957|0.8971|0.8952|**0.8985**| |
|
|
96 |
|Pleural Other|0.8067|0.8255|**0.8544**|0.8396|0.8313|0.8504|0.8466| |
|
|
97 |
|Fracture|0.6613|**0.6944**|0.6894|0.6891|0.6933|0.6810|0.6916| |
|
|
98 |
|Support Devices|0.8661|0.8994|0.9029|0.9041|0.9039|0.9070|**0.9085**| |
|
|
99 |
|
|
|
100 |
- ‘ParallelXNet’ is better at **9 out of 13** labels of the dataset. |
|
|
101 |
|
|
|
102 |
### Test results on ChestX-ray-14 |
|
|
103 |
|
|
|
104 |
|Pathology \Model|R-50v2 |D-121 |D-169 |R-D-Ens |P-64 |P-128 |P-Ens | |
|
|
105 |
|:--------------:|:------:| :-----:| :-----:| :-----:| :-----:| :-----:| :-----:| |
|
|
106 |
|Nodule|0.7585|0.7736|0.7762|0.7817|0.7826|0.7807|**0.7875**| |
|
|
107 |
|Cardiomegaly|0.8770|0.8876|0.8873|0.8943|0.8901|0.8927|**0.8958**| |
|
|
108 |
|Emphysema|0.9098|0.9276|0.9259|0.9288|0.9294|0.9312|**0.9335**| |
|
|
109 |
|Fibrosis|0.8183|0.8257|0.8359|0.8355|0.8321|0.8344|**0.8381**| |
|
|
110 |
|Edema|0.8397|0.8489|0.8471|0.8522|0.8502|0.8474|**0.8526**| |
|
|
111 |
|Consolidation|0.7389|0.7443|0.7505|0.7531|0.7529|0.7527|**0.7576**| |
|
|
112 |
|Pneumonia|0.7137|0.7287|0.7351|0.7337|0.7386|0.7353|**0.7411**| |
|
|
113 |
|Atelectasis|0.7741|0.7799|0.7807|0.7868|0.7863|0.7823|**0.7888**| |
|
|
114 |
|Pneumothorax|0.8649|0.8730|0.8733|**0.8787**|0.8720|0.8740|0.8773| |
|
|
115 |
|Effusion|0.8248|0.8338|0.8343|0.8376|0.8359|0.8370|**0.8399**| |
|
|
116 |
|Mass|0.8128|0.8342|0.8259|0.8361|0.8329|0.8414|**0.8433**| |
|
|
117 |
|Infiltration|0.6895|0.7013|0.7031|**0.7047**|0.6984|0.7028|0.7041| |
|
|
118 |
|Hernia|0.8703|0.8767|0.8847|0.8880|0.8742|0.8905|**0.8911**| |
|
|
119 |
|Pleural Thickening|0.7742|0.7899|0.7918|**0.7949**|0.7897|0.7889|0.7942| |
|
|
120 |
|
|
|
121 |
- ‘ParallelXNet’ is better at **11 out of 14** labels of the dataset. |
|
|
122 |
|
|
|
123 |
### Additional testing on CIFAR-10 |
|
|
124 |
|
|
|
125 |
To further confirm the abilities of ParallelXNet, it was tested on a non-medical dataset. |
|
|
126 |
|
|
|
127 |
| Model Metric | R-D-Ens | P-Ens | |
|
|
128 |
| --- | :---: | :---: | |
|
|
129 |
| Sensitivity | 87.94% | **88.55%** | |
|
|
130 |
| Specificity | 98.66% | **98.75%** | |
|
|
131 |
| Precision | 88.00% | **88.57%** | |
|
|
132 |
| Accuracy | 97.58% | **97.72%** | |
|
|
133 |
| Balanced Accuracy | 93.30% | **93.64%** | |
|
|
134 |
| F1-Score | 87.94% | **88.56%** | |
|
|
135 |
| MCC | 0.8663 | **0.8729** | |
|
|
136 |
|
|
|
137 |
- ParallelXNet is better in terms of **all the metrics** considered for CIFAR-10 dataset. |
|
|
138 |
|
|
|
139 |
## Acknowledgements |
|
|
140 |
|
|
|
141 |
We acknowledge below experts for the contribution of their valuable knowledge throughout this project |
|
|
142 |
|
|
|
143 |
- Dr. Nilmini Fernando (MBBS, DFM) |
|
|
144 |
- Dr. Harshana Bandara (MBBS, MD) |
|
|
145 |
- Dr. Prasantha De Silva (MBBS, MSc) |