Diff of /README.md [000000] .. [314dda]

Switch to unified view

a b/README.md
1
# Parallelized Deep Convolutional Neural Networks for Pathology Detection and Localization in Chest X-Rays
2
3
_This repository contains the code for the prototype application I developed for the Final Research Project of the
4
**BSc. (Hons.) in Computer Science** degree at University of Westminster (taught at IIT Sri Lanka)_
5
6
## Authors
7
8
- [Ravidu Silva](mailto:ravidus.ac@gmail.com)
9
- [Pumudu Fernando (Supervisor)](mailto:pumudu.f@iit.ac.lk)
10
11
## Publication
12
Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification - Springer Nature
13
- [https://doi.org/10.1007/s42979-022-01390-9](https://doi.org/10.1007/s42979-022-01390-9)
14
15
## Project Introduction
16
17
Radiography is a prevalent method of medical diagnosis, especially in humans. Out of the various types of Radiography,
18
Chest Radiography holds an important place due to the numerous diseases diagnosed through it. These diseases vary from
19
low-risk diseases to high-risk, life-threatening diseases. Due to this, accurate diagnosis of Chest X-Rays is considered
20
very crucial. This research project presents a novel way of utilizing multiple Convolutional Neural Networks for
21
accurate detection and localization of diseases present in Chest X-Ray images. The proposed algorithm creates a range of
22
new pathways to conduct research in a variety of fields and use cases. The research also aims to prove the proposed
23
algorithm's strengths and advantages for Chest X-Ray classification within a well-defined scope.
24
25
## Project Pitch
26
27
[![PROJECT PITCH](https://img.youtube.com/vi/0PmXOY-Mt1k/0.jpg)](https://www.youtube.com/watch?v=0PmXOY-Mt1k)
28
29
## Full Project Demonstration
30
31
[![PROJECT DEMO](https://img.youtube.com/vi/SBVE1NVDHcA/0.jpg)](https://www.youtube.com/watch?v=SBVE1NVDHcA)
32
33
## Technologies
34
35
Following are the main technologies used in this project
36
37
- Python
38
- TensorFlow, Keras
39
- Numpy
40
- Flask
41
- HTML5, CSS, JS
42
43
## Application Installation
44
45
### 1. Pre-requisites
46
47
- Python 3.7+
48
- PIP
49
- CUDA supported GPU with at least 10GB VRAM
50
  - CUDA installation
51
52
### 2. Install Dependencies
53
54
   ```
55
   pip install -r requirements.txt
56
   ```
57
58
### 3. Model file placement
59
60
- Place the model files in their respective folders
61
62
### 4. Running the Application
63
64
```
65
python3 app.py --host=0.0.0.0 --port=5000 --cert=adhoc --no-reload
66
```
67
68
After the execution of this line you can visit you localhost to use the application
69
70
## Model Accuracy
71
72
### Models Names
73
74
- R-50v2: ResNet50v2
75
- D-121: DenseNet-121
76
- D-169: DenseNet-169
77
- R-D-Ens: Ensemble of ResNet50v2, DenseNet-121 and DenseNet-169
78
- P-64: ParallelXNet (ratio: 64)
79
- P-128: ParallelXNet (ratio: 128)
80
- P-Ens: Ensemble of P-64 and P-128
81
82
### Test results on MIMIC-CXR 2020
83
84
|Pathology \Model|R-50v2|D-121|D-169|R-D-Ens|P-64|P-128|P-Ens|
85
|:--------------:|:------:| :-----:| :-----:| :-----:| :-----:| :-----:| :-----:|
86
|Enlarged Cardiom.|0.7026|0.7048|**0.7209**|0.7159|0.7061|0.7076|0.7107|
87
|Cardiomegaly|0.7808|0.7807|0.7888|0.7889|0.7921|0.7874|**0.7932**|
88
|Lung Lesion|0.6965|0.7053|0.7111|0.7109|0.7155|0.7157|**0.7192**|
89
|Lung Opacity|0.6899|0.6946|0.6967|0.7000|0.6978|0.7007|**0.7031**|
90
|Edema|0.8357|0.8389|**0.8434**|0.8432|0.8403|0.8391|0.8419|
91
|Consolidation|0.7475|0.7507|0.7548|0.7580|**0.7605**|0.7514|0.7597|
92
|Pneumonia|0.7116|0.7228|0.7289|0.7302|0.7341|0.7303|**0.7372**|
93
|Atelectasis|0.7634|0.7627|0.7668|0.7688|0.7674|0.7680|**0.7703**|
94
|Pneumothorax|0.8467|0.8691|0.8640|0.8690|0.8595|**0.8711**|0.8706|
95
|Pleural Effusion|0.8897|0.8921|0.8941|0.8957|0.8971|0.8952|**0.8985**|
96
|Pleural Other|0.8067|0.8255|**0.8544**|0.8396|0.8313|0.8504|0.8466|
97
|Fracture|0.6613|**0.6944**|0.6894|0.6891|0.6933|0.6810|0.6916|
98
|Support Devices|0.8661|0.8994|0.9029|0.9041|0.9039|0.9070|**0.9085**|
99
100
- ‘ParallelXNet’ is better at **9 out of 13** labels of the dataset.
101
102
### Test results on ChestX-ray-14
103
104
|Pathology \Model|R-50v2  |D-121   |D-169   |R-D-Ens |P-64    |P-128   |P-Ens   |
105
|:--------------:|:------:| :-----:| :-----:| :-----:| :-----:| :-----:| :-----:|
106
|Nodule|0.7585|0.7736|0.7762|0.7817|0.7826|0.7807|**0.7875**|
107
|Cardiomegaly|0.8770|0.8876|0.8873|0.8943|0.8901|0.8927|**0.8958**|
108
|Emphysema|0.9098|0.9276|0.9259|0.9288|0.9294|0.9312|**0.9335**|
109
|Fibrosis|0.8183|0.8257|0.8359|0.8355|0.8321|0.8344|**0.8381**|
110
|Edema|0.8397|0.8489|0.8471|0.8522|0.8502|0.8474|**0.8526**|
111
|Consolidation|0.7389|0.7443|0.7505|0.7531|0.7529|0.7527|**0.7576**|
112
|Pneumonia|0.7137|0.7287|0.7351|0.7337|0.7386|0.7353|**0.7411**|
113
|Atelectasis|0.7741|0.7799|0.7807|0.7868|0.7863|0.7823|**0.7888**|
114
|Pneumothorax|0.8649|0.8730|0.8733|**0.8787**|0.8720|0.8740|0.8773|
115
|Effusion|0.8248|0.8338|0.8343|0.8376|0.8359|0.8370|**0.8399**|
116
|Mass|0.8128|0.8342|0.8259|0.8361|0.8329|0.8414|**0.8433**|
117
|Infiltration|0.6895|0.7013|0.7031|**0.7047**|0.6984|0.7028|0.7041|
118
|Hernia|0.8703|0.8767|0.8847|0.8880|0.8742|0.8905|**0.8911**|
119
|Pleural Thickening|0.7742|0.7899|0.7918|**0.7949**|0.7897|0.7889|0.7942|
120
121
- ‘ParallelXNet’ is better at **11 out of 14** labels of the dataset.
122
123
### Additional testing on CIFAR-10
124
125
To further confirm the abilities of ParallelXNet, it was tested on a non-medical dataset.
126
127
| Model Metric | R-D-Ens | P-Ens |
128
| --- | :---: | :---: |
129
| Sensitivity | 87.94% | **88.55%** |
130
| Specificity | 98.66% | **98.75%** |
131
| Precision | 88.00% | **88.57%** |
132
| Accuracy | 97.58% | **97.72%** |
133
| Balanced Accuracy | 93.30% | **93.64%** |
134
| F1-Score | 87.94% | **88.56%** |
135
| MCC | 0.8663 | **0.8729** |
136
137
- ParallelXNet is better in terms of **all the metrics** considered for CIFAR-10 dataset.
138
139
## Acknowledgements
140
141
We acknowledge below experts for the contribution of their valuable knowledge throughout this project
142
143
- Dr. Nilmini Fernando (MBBS, DFM)
144
- Dr. Harshana Bandara (MBBS, MD)
145
- Dr. Prasantha De Silva (MBBS, MSc)