Companion code for OpenSRH. Paper submitted to NeurIPS 2022
Datasets and Benchmarks Track.
Paper Website /
arXiv /
MLiNS Lab
console
git clone git@github.com:MLNeurosurg/opensrh.git
console
conda create -n opensrh python=3.9
console
conda activate opensrh
console
<cd /path/to/opensrh/repo/dir>
pip install -e .
The code base is written using PyTorch Lightning, with custom network and
datasets.
train/config/train_ce.yaml
with desiredtrain
and activate the conda virtual environment.train/train_ce.py
to start training:console
python train_ce.py -c config/train_ce.yaml
train/config/train_contrastive.yaml
withtrain
and activate the conda virtual environment.train/train_contrastive.py
to start training:console
python train_contrastive.py -c config/train_contrastive.yaml
train/config/train_finetune.yaml
and continue training usingtrain/train_finetune.py
:console
python train_finetune.py -c config/train_finetune.yaml
train/config/eval.yaml
with desiredtrain
and activate the conda virtual environment.train/train_ce.py
to start training:console
python eval.py -c config/eval.yaml
OpenSRH data is released under Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0), and the code is licensed under the MIT License.
See LICENSE for license information and THIRD_PARTY for third party notices.