require 'torch';
require 'image';
folder = '/home/andrew/mitosis-detection'
train_folder = paths.concat(folder,'mitosis-train')
test_folder = paths.concat(folder,'mitosis-test')
trainset = paths.concat(folder,'mitosis-train.t7')
testset = paths.concat(folder,'mitosis-test.t7')
function gen_dataset(data_folder, outfile)
true_folder = paths.concat(data_folder,'true')
false_folder = paths.concat(data_folder,'false')
true_files = {}
false_files = {}
for file in paths.files(true_folder,'.png') do
table.insert(true_files, paths.concat(true_folder,file))
end
for file in paths.files(false_folder,'.png') do
table.insert(false_files, paths.concat(false_folder,file))
end
data = torch.ByteTensor(#true_files+#false_files,3,101,101)
label = torch.ByteTensor(#true_files+#false_files)
for i,file in ipairs(true_files) do
print(i)
data[{{i},{},{},{}}] = image.load(file,3,'byte')
label[i] = 1
end
for i,file in ipairs(false_files) do
print(i + #true_files)
data[{{i + #true_files},{},{},{}}] = image.load(file,3,'byte')
label[i + #true_files] = 1
end
dataset = {}
dataset.data = data
dataset.label = label
torch.save(outfile, dataset)
end
gen_dataset(train_folder,trainset)
gen_dataset(test_folder,testset)