a b/matlab/gen_dataset.m
1
clear
2
close all
3
4
% path to folder containing training data
5
old_trainset_folder = '/home/andrew/mitosis/MITOS/testing/';
6
7
% make training set directories
8
new_trainset_folder = '/home/andrew/mitosis/mitosis-test/';
9
if exist(new_trainset_folder, 'dir')
10
    rmdir(new_trainset_folder, 's')
11
end
12
mkdir([new_trainset_folder 'true'])
13
mkdir([new_trainset_folder 'false'])
14
15
% count the total number of images for the waitbar
16
N = 0;
17
for j=1:5
18
   % find the number of images in the folder
19
    folder = [old_trainset_folder 'A' num2str(j-1, '%02u') '_v2/'];
20
    n = length(dir([folder '*.csv']));
21
    N = N + n;
22
end
23
24
% iterate over the twelve patients
25
M = 0;
26
P = 0;
27
k = 0;
28
h = waitbar(0,'Creating training set ... 0 %');
29
for j=1:5
30
    % find the number of images in the folder
31
    folder = [old_trainset_folder 'A' num2str(j-1, '%02u') '_v2/'];
32
    image_files = dir([folder '*.bmp']);
33
    csv_files = dir([folder '*.csv']);
34
    n = length(image_files);
35
36
    % create new data set
37
    for i=1:n
38
        image_file = [folder image_files(i).name];
39
        csv_file = [folder csv_files(i).name];
40
        [m, p] = add_dataset(image_file, csv_file, new_trainset_folder);
41
        M = M + m;
42
        P = P + p;
43
        k = k + 1;
44
        waitbar(k/N,h,['Creating training set ... ' num2str(100*k/N) ' %']);
45
    end
46
end
47
48
close(h)
49
50
disp(['Created ' num2str(P) ' window training images from ' num2str(N) ' large training images containing ' num2str(M) ' mitotic figures.'])