clear
close all
% path to folder containing training data
old_trainset_folder = '/home/andrew/mitosis/MITOS/testing/';
% make training set directories
new_trainset_folder = '/home/andrew/mitosis/mitosis-test/';
if exist(new_trainset_folder, 'dir')
rmdir(new_trainset_folder, 's')
end
mkdir([new_trainset_folder 'true'])
mkdir([new_trainset_folder 'false'])
% count the total number of images for the waitbar
N = 0;
for j=1:5
% find the number of images in the folder
folder = [old_trainset_folder 'A' num2str(j-1, '%02u') '_v2/'];
n = length(dir([folder '*.csv']));
N = N + n;
end
% iterate over the twelve patients
M = 0;
P = 0;
k = 0;
h = waitbar(0,'Creating training set ... 0 %');
for j=1:5
% find the number of images in the folder
folder = [old_trainset_folder 'A' num2str(j-1, '%02u') '_v2/'];
image_files = dir([folder '*.bmp']);
csv_files = dir([folder '*.csv']);
n = length(image_files);
% create new data set
for i=1:n
image_file = [folder image_files(i).name];
csv_file = [folder csv_files(i).name];
[m, p] = add_dataset(image_file, csv_file, new_trainset_folder);
M = M + m;
P = P + p;
k = k + 1;
waitbar(k/N,h,['Creating training set ... ' num2str(100*k/N) ' %']);
end
end
close(h)
disp(['Created ' num2str(P) ' window training images from ' num2str(N) ' large training images containing ' num2str(M) ' mitotic figures.'])